[1]
H. A. Aisyah, M. T. Paridah, S. M. Sapuan, R. A. Ilyas, A. Khalina, N. M. Nurazzi, S. H. Lee, C. H. A. Lee, Comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers, 13(3) (2021) 471.
DOI: 10.3390/polym13030471
Google Scholar
[2]
S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishak, R. A. Ilyas, M. R. M. Asyraf, Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13(3) (2021). 423.
DOI: 10.3390/polym13030423
Google Scholar
[3]
R.K. Malviya, R.K. Singh, R. Purohit, R. Sinha, Natural fibre reinforced composite materials: Environmentally better life cycle assessment–A case study. Materials Today: Proceedings, 26. (2020) 3157-3160.
DOI: 10.1016/j.matpr.2020.02.651
Google Scholar
[4]
T. Jirawattanasomkul, S. Likitlersuang, N. Wuttiwannasak, T. Ueda, D. Zhang, M. Shono, Structural behaviour of pre-damaged reinforced concrete beams strengthened with natural fibre reinforced polymer composites. Composite Structures, 244 (2020) 112309.
DOI: 10.1016/j.compstruct.2020.112309
Google Scholar
[5]
B. Marques, A. Tadeu, J. António, J. Almeida, J. de Brito, Mechanical, thermal and acoustic behaviour of polymer-based composite materials produced with rice husk and expanded cork by-products. Construction and Building Materials, 239 (2020) 117851.
DOI: 10.1016/j.conbuildmat.2019.117851
Google Scholar
[6]
S. Narayanasamy, J. Jayaprakash, Application of carbon-polymer based composite electrodes for Microbial fuel cells. Reviews in Environmental Science and Bio/Technology, (2020) 1-26.
DOI: 10.1007/s11157-020-09545-x
Google Scholar
[7]
G. R. De Almeida Neto, C. A. G. Beatrice, D. R. Leiva, L. A. Pessan, Polymer-based composite containing nanostructured LaNi5 for hydrogen storage: Improved air stability and processability. International Journal of Hydrogen Energy, 45(27) (2020) 14017-14027.
DOI: 10.1016/j.ijhydene.2020.03.069
Google Scholar
[8]
A. G. Koniuszewska, J. W. Kaczmar, Application of polymer based composite materials in transportation. Progress in Rubber Plastics and Recycling Technology, 32(1) (2016) 1-24.
DOI: 10.1177/147776061603200101
Google Scholar
[9]
S. Kumar, Y. Kumar, B. Gangil, V. K. Patel, Effects of agro-waste and bio-particulate fillers on mechanical and wear properties of sisal fibre based polymer composites. Materials Today: Proceedings, 4(9) (2017) 10144-10147.
DOI: 10.1016/j.matpr.2017.06.337
Google Scholar
[10]
P. E. Imoisili, T. C. Ezenwafor, B. E. AttahDaniel, S. O. O. Olusunle, Mechanical Properties of Cocoa-Pod/Epoxy Composite; Effect of Filler Fraction. Chem. Sci. Inter. Journal 3(4) (2013) 526-531.
DOI: 10.9734/acsj/2013/5526
Google Scholar
[11]
M. V. Madurwar, R. V. Ralegaonkar, S. A. Mandavgane, Application of agro-waste for sustainable construction materials: A review. Construction and Building materials, 38 (2013) 872-878.
DOI: 10.1016/j.conbuildmat.2012.09.011
Google Scholar
[12]
M. J. John, S. Thomas, Biofibres and biocomposites. Carbohydrate polymers, 71(3) (2008) 343-364.
DOI: 10.1016/j.carbpol.2007.05.040
Google Scholar
[13]
P. Peças, H. Carvalho, H. Salman, M. Leite, Natural fibre composites and their applications: a review. Journal of Composites Science, 2(4) (2018) 66.
DOI: 10.3390/jcs2040066
Google Scholar
[14]
N. Amir, K. A. Z. Abidin, F. B. M. Shiri, Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Procedia engineering, 184 (2017) 573-580.
DOI: 10.1016/j.proeng.2017.04.140
Google Scholar
[15]
P. Peças, H. Carvalho, H. Salman, M. Leite, Natural fibre composites and their applications: a review. Journal of Composites Science, 2(4) (2018) 66.
DOI: 10.3390/jcs2040066
Google Scholar
[16]
T. Y. Gowda, M. R. Sanjay, K. S. Bhat, P. Madhu, P. Senthamaraikannan, B. Yogesha, Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1) (2018) 1446667.
DOI: 10.1080/23311916.2018.1446667
Google Scholar
[17]
P. E. Imoisili, I. T. Dagogo, A. V. Popoola, A. E Okoronkwo, Effect of High-Frequency Microwave Radiation on the Mechanical Properties of Plantain (Musa paradisiacal) Fibre/Epoxy Biocomposite. Journal of Physical Science. 29(3) (2018) 23-35.
Google Scholar
[18]
P. E. Imoisili, O. B. Fadare, A. V. Popoola, A. E. Okoronkwo, Effect of Chemical Treatment on the Morphology and Mechanical Properties of Plantain (Musa paradisiacal) Fiber. IOSR Journal of Applied Chemistry (IOSR-JAC) 10(5) (2017) 70-73.
DOI: 10.9790/5736-1005017073
Google Scholar
[19]
P. E. Imoisili, K. O. Ukoba, T. C. Jen, Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa Paradisiacal) Fibre/MWCNT Hybrid Epoxy Nanocomposites. J Mater Res Technol. 9(3) (2020) 4933-4939.
DOI: 10.1016/j.jmrt.2020.03.012
Google Scholar
[20]
J. Cruz, R. Fangueiro, Surface modification of natural fibers: a review. Procedia Engineering, 155 (2016) 285-288.
DOI: 10.1016/j.proeng.2016.08.030
Google Scholar
[21]
D. P. Ferreira, J. Cruz, R. Fangueiro, Surface modification of natural fibers in polymer composites. In Green composites for automotive applications (2019) 3-41.
DOI: 10.1016/b978-0-08-102177-4.00001-x
Google Scholar
[22]
S. Butylina, O. Martikka, T. Kärki, Properties of wood fibre-polypropylene composites: Effect of wood fibre source. Applied Composite Materials, 18(2) (2011) 101-111.
DOI: 10.1007/s10443-010-9134-2
Google Scholar
[23]
M. E. Haque, M. W. Khan, M. Rani, Studies on morphological, physico-chemical and mechanical properties of wheat straw reinforced polyester resin composite. Polymer Bulletin, (2021) 1-20.
DOI: 10.1007/s00289-021-03630-z
Google Scholar
[24]
K. Senthilkumar, N. Saba, M. Chandrasekar, M. Jawaid, N. Rajini, S. Siengchin, N. Ayrilmis, F. Mohammad, H. A. Al-Lohedan, Compressive, dynamic and thermo-mechanical properties of cellulosic pineapple leaf fibre/polyester composites: Influence of alkali treatment on adhesion. International Journal of Adhesion and Adhesives, 106 (2021) 102823.
DOI: 10.1016/j.ijadhadh.2021.102823
Google Scholar
[25]
A.G. Adeniyi, D.V. Onifade, J.O. Ighalo, A.S. Adeoye, A review of coir fiber reinforced polymer composites. Composites Part B: Engineering, 176 (2019) 107305.
DOI: 10.1016/j.compositesb.2019.107305
Google Scholar
[26]
P.E. Imoisili, T. C. Jen, Mechanical and water absorption behaviour of potassium permanganate (KMnO4) treated plantain (Musa Paradisiacal) fibre/epoxy bio-composites. Journal of Materials Research and Technology, 9(4) (2020). 8705-8713.
DOI: 10.1016/j.jmrt.2020.05.121
Google Scholar
[27]
P.E. Imoisili, T.C. Jen, Modelling and Optimization of the Impact Strength of Plantain (Musa Paradisiacal) Fibre/MWCNT Hybrid Nanocomposite Using Response Surface Methodology. J Mater Res Technol. 13, (2021). 1946-1954.
DOI: 10.1016/j.jmrt.2021.05.101
Google Scholar
[28]
E.M. Cadena Ch, J.M. Vélez R, J.F. Santa, G.V. Otálvaro, Natural fibers from plantain pseudostem (Musa paradisiacal) for use in fiber-reinforced composites. Journal of Natural Fibers, 14(5) (2017) 678-690.
DOI: 10.1080/15440478.2016.1266295
Google Scholar