Mechanical Properties of Polyester Resin Reinforced with Treated Plantain Pseudo Steam Fibers

Article Preview

Abstract:

The utilization of environmentally sustainable agro-waste as Natural fibers (NF) for reinforcement in polymer bio-composites has opened up a new path for materials development. Investigation has advocated that alterations of fiber surface by either physical or chemical techniques, enhances the efficacy of NF reinforced polymer composite. plantain (Musa paradisiacal) fiber (PF) isolated from plantain pseudo steam was treated with potassium permanganate in acetone in this investigation. Using a manual lay-up and compression moulding approach, modified and unmodified fibers were employed to manufacture a NF/polyester resin bio-composite. Surface morphology shows surface roughness of PF surface after treatments. The plantain fiber bio-composites (PFB) reinforced with modified fiber shows improvement in mechanical strength under optimal conditions, providing possibilities and durability for use in technical and structural

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-37

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. A. Aisyah, M. T. Paridah, S. M. Sapuan, R. A. Ilyas, A. Khalina, N. M. Nurazzi, S. H. Lee, C. H. A. Lee, Comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers, 13(3) (2021) 471.

DOI: 10.3390/polym13030471

Google Scholar

[2] S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishak, R. A. Ilyas, M. R. M. Asyraf, Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13(3) (2021). 423.

DOI: 10.3390/polym13030423

Google Scholar

[3] R.K. Malviya, R.K. Singh, R. Purohit, R. Sinha, Natural fibre reinforced composite materials: Environmentally better life cycle assessment–A case study. Materials Today: Proceedings, 26. (2020) 3157-3160.

DOI: 10.1016/j.matpr.2020.02.651

Google Scholar

[4] T. Jirawattanasomkul, S. Likitlersuang, N. Wuttiwannasak, T. Ueda, D. Zhang, M. Shono, Structural behaviour of pre-damaged reinforced concrete beams strengthened with natural fibre reinforced polymer composites. Composite Structures, 244 (2020) 112309.

DOI: 10.1016/j.compstruct.2020.112309

Google Scholar

[5] B. Marques, A. Tadeu, J. António, J. Almeida, J. de Brito, Mechanical, thermal and acoustic behaviour of polymer-based composite materials produced with rice husk and expanded cork by-products. Construction and Building Materials, 239 (2020) 117851.

DOI: 10.1016/j.conbuildmat.2019.117851

Google Scholar

[6] S. Narayanasamy, J. Jayaprakash, Application of carbon-polymer based composite electrodes for Microbial fuel cells. Reviews in Environmental Science and Bio/Technology, (2020) 1-26.

DOI: 10.1007/s11157-020-09545-x

Google Scholar

[7] G. R. De Almeida Neto, C. A. G. Beatrice, D. R. Leiva, L. A. Pessan, Polymer-based composite containing nanostructured LaNi5 for hydrogen storage: Improved air stability and processability. International Journal of Hydrogen Energy, 45(27) (2020) 14017-14027.

DOI: 10.1016/j.ijhydene.2020.03.069

Google Scholar

[8] A. G. Koniuszewska, J. W. Kaczmar, Application of polymer based composite materials in transportation. Progress in Rubber Plastics and Recycling Technology, 32(1) (2016) 1-24.

DOI: 10.1177/147776061603200101

Google Scholar

[9] S. Kumar, Y. Kumar, B. Gangil, V. K. Patel, Effects of agro-waste and bio-particulate fillers on mechanical and wear properties of sisal fibre based polymer composites. Materials Today: Proceedings, 4(9) (2017) 10144-10147.

DOI: 10.1016/j.matpr.2017.06.337

Google Scholar

[10] P. E. Imoisili, T. C. Ezenwafor, B. E. AttahDaniel, S. O. O. Olusunle, Mechanical Properties of Cocoa-Pod/Epoxy Composite; Effect of Filler Fraction. Chem. Sci. Inter. Journal 3(4) (2013) 526-531.

DOI: 10.9734/acsj/2013/5526

Google Scholar

[11] M. V. Madurwar, R. V. Ralegaonkar, S. A. Mandavgane, Application of agro-waste for sustainable construction materials: A review. Construction and Building materials, 38 (2013) 872-878.

DOI: 10.1016/j.conbuildmat.2012.09.011

Google Scholar

[12] M. J. John, S. Thomas, Biofibres and biocomposites. Carbohydrate polymers, 71(3) (2008) 343-364.

DOI: 10.1016/j.carbpol.2007.05.040

Google Scholar

[13] P. Peças, H. Carvalho, H. Salman, M. Leite, Natural fibre composites and their applications: a review. Journal of Composites Science, 2(4) (2018) 66.

DOI: 10.3390/jcs2040066

Google Scholar

[14] N. Amir, K. A. Z. Abidin, F. B. M. Shiri, Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Procedia engineering, 184 (2017) 573-580.

DOI: 10.1016/j.proeng.2017.04.140

Google Scholar

[15] P. Peças, H. Carvalho, H. Salman, M. Leite, Natural fibre composites and their applications: a review. Journal of Composites Science, 2(4) (2018) 66.

DOI: 10.3390/jcs2040066

Google Scholar

[16] T. Y. Gowda, M. R. Sanjay, K. S. Bhat, P. Madhu, P. Senthamaraikannan, B. Yogesha, Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1) (2018) 1446667.

DOI: 10.1080/23311916.2018.1446667

Google Scholar

[17] P. E. Imoisili, I. T. Dagogo, A. V. Popoola, A. E Okoronkwo, Effect of High-Frequency Microwave Radiation on the Mechanical Properties of Plantain (Musa paradisiacal) Fibre/Epoxy Biocomposite. Journal of Physical Science. 29(3) (2018) 23-35.

Google Scholar

[18] P. E. Imoisili, O. B. Fadare, A. V. Popoola, A. E. Okoronkwo, Effect of Chemical Treatment on the Morphology and Mechanical Properties of Plantain (Musa paradisiacal) Fiber. IOSR Journal of Applied Chemistry (IOSR-JAC) 10(5) (2017) 70-73.

DOI: 10.9790/5736-1005017073

Google Scholar

[19] P. E. Imoisili, K. O. Ukoba, T. C. Jen, Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa Paradisiacal) Fibre/MWCNT Hybrid Epoxy Nanocomposites. J Mater Res Technol. 9(3) (2020) 4933-4939.

DOI: 10.1016/j.jmrt.2020.03.012

Google Scholar

[20] J. Cruz, R. Fangueiro, Surface modification of natural fibers: a review. Procedia Engineering, 155 (2016) 285-288.

DOI: 10.1016/j.proeng.2016.08.030

Google Scholar

[21] D. P. Ferreira, J. Cruz, R. Fangueiro, Surface modification of natural fibers in polymer composites. In Green composites for automotive applications (2019) 3-41.

DOI: 10.1016/b978-0-08-102177-4.00001-x

Google Scholar

[22] S. Butylina, O. Martikka, T. Kärki, Properties of wood fibre-polypropylene composites: Effect of wood fibre source. Applied Composite Materials, 18(2) (2011) 101-111.

DOI: 10.1007/s10443-010-9134-2

Google Scholar

[23] M. E. Haque, M. W. Khan, M. Rani, Studies on morphological, physico-chemical and mechanical properties of wheat straw reinforced polyester resin composite. Polymer Bulletin, (2021) 1-20.

DOI: 10.1007/s00289-021-03630-z

Google Scholar

[24] K. Senthilkumar, N. Saba, M. Chandrasekar, M. Jawaid, N. Rajini, S. Siengchin, N. Ayrilmis, F. Mohammad, H. A. Al-Lohedan, Compressive, dynamic and thermo-mechanical properties of cellulosic pineapple leaf fibre/polyester composites: Influence of alkali treatment on adhesion. International Journal of Adhesion and Adhesives, 106 (2021) 102823.

DOI: 10.1016/j.ijadhadh.2021.102823

Google Scholar

[25] A.G. Adeniyi, D.V. Onifade, J.O. Ighalo, A.S. Adeoye, A review of coir fiber reinforced polymer composites. Composites Part B: Engineering, 176 (2019) 107305.

DOI: 10.1016/j.compositesb.2019.107305

Google Scholar

[26] P.E. Imoisili, T. C. Jen, Mechanical and water absorption behaviour of potassium permanganate (KMnO4) treated plantain (Musa Paradisiacal) fibre/epoxy bio-composites. Journal of Materials Research and Technology, 9(4) (2020). 8705-8713.

DOI: 10.1016/j.jmrt.2020.05.121

Google Scholar

[27] P.E. Imoisili, T.C. Jen, Modelling and Optimization of the Impact Strength of Plantain (Musa Paradisiacal) Fibre/MWCNT Hybrid Nanocomposite Using Response Surface Methodology. J Mater Res Technol. 13, (2021). 1946-1954.

DOI: 10.1016/j.jmrt.2021.05.101

Google Scholar

[28] E.M. Cadena Ch, J.M. Vélez R, J.F. Santa, G.V. Otálvaro, Natural fibers from plantain pseudostem (Musa paradisiacal) for use in fiber-reinforced composites. Journal of Natural Fibers, 14(5) (2017) 678-690.

DOI: 10.1080/15440478.2016.1266295

Google Scholar