[1]
A. Gopanna, K. P. Rajan, S. P. Thomas, M. Chavali, Chapter 6 - Polyethylene and polypropylene matrix composites for biomedical applications, In Materials for Biomedical Engineering, Grumezescu, V.; Grumezescu, A. M., Eds. Elsevier: 2019; pp.175-216.
DOI: 10.1016/b978-0-12-816874-5.00006-2
Google Scholar
[2]
A. M. Díez-Pascual, Mechanical Properties of Epoxy/Thermoplastic Blends. In Handbook of Epoxy Blends, J. Parameswaranpillai, N. Hameed, J. Pionteck, E, Woo, Eds. Springer, Cham: Switzerland, 2017, pp.743-774.
DOI: 10.1007/978-3-319-40043-3_25
Google Scholar
[3]
T. P. Mohan, K. Kanny, Melt blend studies of nanoclay-filled polypropylene (PP)–high-density polyethylene (HDPE) composites, Journal of Materials Science. 48, 23 (2013) 8292-8301.
DOI: 10.1007/s10853-013-7642-9
Google Scholar
[4]
T. Gurunathan, C. R. K. Rao, R. Narayan, K. V. S. N. Raju, Polyurethane conductive blends and composites: synthesis and applications perspective, Journal of Materials Science. 48, 1 (2013) 67-80.
DOI: 10.1007/s10853-012-6658-x
Google Scholar
[5]
R. Yadav, M. Tirumali, X. Wang, M. Naebe, B. Kandasubramanian, Polymer composite for antistatic application in aerospace, Defence Technology. 16(2020), 107-118.
DOI: 10.1016/j.dt.2019.04.008
Google Scholar
[6]
H. Liu, Q. Li, S. Zhang, R. Yin, X. Liu, Y. He, K. Dai, C. Shan, J. Guo, C. Liu, Electrically conductive polymer composites for smart flexible strain sensors: a critical review, J. Mater. Chem., C. 6,45 (2018) 12121-12141.
DOI: 10.1039/c8tc04079f
Google Scholar
[7]
S. Maity, A. Chatterjee, Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: A review, J. Ind. Text. 47,8 (2018) 2228-2252.
DOI: 10.1177/1528083716670310
Google Scholar
[8]
Y. Jafarzadeh, R. Yegani, M. Sedaghat, Preparation, characterization and fouling analysis of ZnO/polyethylene hybrid membranes for collagen separation, Chem. Eng. Res. Des. 94(2015) 417-427.
DOI: 10.1016/j.cherd.2014.08.017
Google Scholar
[9]
A. Akbari, R. Yegani, B. Pourabbas, Synthesis of high dispersible hydrophilic poly(ethylene glycol)/vinyl silane grafted silica nanoparticles to fabricate protein repellent polyethylene nanocomposite, Eur. Polym. J. 81(2016) 86-97.
DOI: 10.1016/j.eurpolymj.2016.05.011
Google Scholar
[10]
T. Matsumoto, Y. Nakanishi, C. Hongo, H. Hakukawa, S. Horiuchi, T. Nishino, Adhesive interphase analyses of isotactic polypropylene and cyanoacrylate with cobalt complex primers, Polymer. 137(2018) 63-71.
DOI: 10.1016/j.polymer.2018.01.011
Google Scholar
[11]
P. Rzeczkowski, M. Lucia, A. Müller, M. Facklam, A. Cohnen, P. Schäfer, C. Hopmann, T. Hickmann, P. Pötschke, B. Krause, In Development of joining methods for highly filled graphite/PP composite based bipolar plates for fuel cells: adhesive joining and welding, AIP Conference Proceedings, AIP Publishing LLC: (2019)110003.
DOI: 10.1063/1.5121678
Google Scholar
[12]
P. Rzeczkowski, B. Krause, P. Pötschke, Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications, Polymers. 11,3 (2019) 462.
DOI: 10.3390/polym11030462
Google Scholar
[13]
A. Sciacovelli, M. E. Navarro, Y. Jin, G. Qiao, L. Zheng, G. Leng, L. Wang, Y. Ding, High density polyethylene (HDPE) — Graphite composite manufactured by extrusion: A novel way to fabricate phase change materials for thermal energy storage, Particuology. 40 (2018) 131-140.
DOI: 10.1016/j.partic.2017.11.011
Google Scholar
[14]
J. Yu, L. Q. Zhang, M. Rogunova, J. Summers, A. Hiltner, E. Baer, Conductivity of polyolefins filled with high‐structure carbon black, Journal of applied polymer science. 98, 4 (2005) 1799-1805.
DOI: 10.1002/app.22238
Google Scholar
[15]
K. Wu, Y. Xue, W. Yang, S. Chai, F. Chen, Q. Fu, Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite–multi-wall carbon nanotubes ternary composites, Composites Science and Technology. 130(2016) 28-35.
DOI: 10.1016/j.compscitech.2016.04.034
Google Scholar
[16]
V. Causin, C. Marega, A. Marigo, G. Ferrara, A. Ferraro, Morphological and structural characterization of polypropylene/conductive graphite nanocomposites, European Polymer Journal. 42, 12(2006) 3153-3161.
DOI: 10.1016/j.eurpolymj.2006.08.017
Google Scholar
[17]
J. Z. Liang, Q. Q. Yang, Mechanical properties of carbon black-filled high-density polyethylene antistatic composites, Journal of Reinforced Plastics and Composites. 28, 3 (2009), 295-304.
DOI: 10.1177/0731684407081376
Google Scholar
[18]
S. K. H. Gulrez, M. E. Ali Mohsin, H. Shaikh, A. Anis, A. M. Pulose, M. K. Yadav, E. H. P. Qua, S. M. Al‐Zahrani, A review on electrically conductive polypropylene and polyethylene, Polym. Compos. 35, 5 (2014) 900-914.
DOI: 10.1002/pc.22734
Google Scholar
[19]
B. Caglar, J. Richards, P. Fischer, J. Tuebke, Conductive polymer composites and coated metals as alternative bipolar plate materials for all-vanadium redox-flow batteries, Adv. Mater. Lett. 5 (2014) 299-308.
DOI: 10.5185/amlett.2014.amwc.1023
Google Scholar
[20]
A. Kausar, Overview on conducting polymer in energy storage and energy conversion system, J. Macromol. Sci. A. 54, 9 (2017) 640-653.
DOI: 10.1080/10601325.2017.1317210
Google Scholar
[21]
R. Taherian, A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection, J. Power Sources. 265 (2014) 370-390.
DOI: 10.1016/j.jpowsour.2014.04.081
Google Scholar
[22]
X. L. Jiang, K. Sun, Y. X. Zhang, Effects of dynamical cure and compatibilization on the morphology and properties of the PP/epoxy blends, Express Polymer Letters. 1 (2007) 283-291.
DOI: 10.3144/expresspolymlett.2007.41
Google Scholar
[23]
L. Cui, Y. Zhang, Y. Zhang, X. Zhang, W. Zhou, Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black, Eur. Polym. J. 43, 12 (2007) 5097-5106.
DOI: 10.1016/j.eurpolymj.2007.08.023
Google Scholar
[24]
H. Duan, H. Zhu, Y. Yang, T. Hou, G. Zhao, Y. Liu, Facile and economical fabrication of conductive polyamide 6 composites with segregated expanded graphite networks for efficient electromagnetic interference shielding, Journal of Materials Science: Materials in Electronics. 29, 2 (2018) 1058-1064.
DOI: 10.1007/s10854-017-8006-z
Google Scholar
[25]
A. Graziano, C. Garcia, S. Jaffer, J. Tjong, M. Sain, Novel functional graphene and its thermodynamic interfacial localization in biphasic polyolefin systems for advanced lightweight applications, Composites Science and Technology. 188 (2020), 107958.
DOI: 10.1016/j.compscitech.2019.107958
Google Scholar
[26]
Y. Li, S. Wang, Y. Zhang, Y. Zhang, Electrical properties and morphology of polypropylene/epoxy/glass fiber composites filled with carbon black, J. Appl. Polym. Sci. 98, 3 (2005) 1142-1149.
DOI: 10.1002/app.22105
Google Scholar
[27]
Y. Li, S. Wang, Y. Zhang, Y. Zhang, Carbon black‐filled immiscible polypropylene/epoxy blends, J. Appl. Polym. Sci. 99, 2 (2006) 461-471.
DOI: 10.1002/app.22011
Google Scholar
[28]
R. L. Barton, J. M. Keith, J. A. King, Electrical conductivity modeling of multiple carbon fillers in liquid crystal polymer composites for fuel cell bipolar plate applications, J. New Mater. Electrochem. Syst. 11, 3 (2008) 181.
Google Scholar
[29]
B. K. Kakati, D. Sathiyamoorthy, A. Verma, Semi-empirical modeling of electrical conductivity for composite bipolar plate with multiple reinforcements, Int. J. Hydrogen Energy. 36, 22 (2011) 14851-14857.
DOI: 10.1016/j.ijhydene.2011.02.136
Google Scholar
[30]
J. W. Kim, N. H. Kim, T. Kuilla, T. J. Kim, K. Y. Rhee, J. H. Lee, Synergy effects of hybrid carbon system on properties of composite bipolar plates for fuel cells, J. Power Sources. 195, 17 (2010), 5474-5480.
DOI: 10.1016/j.jpowsour.2010.03.083
Google Scholar
[31]
M. H. Lee, H. Y. Kim, S. M. Oh, B. C. Kim, D. Bang, J. T. Han, J. S. Woo, Structural optimization of graphite for high-performance fluorinated ethylene–propylene composites as bipolar plates, Int. J. Hydrogen Energy. 43, 48 (2018) 21918-21927.
DOI: 10.1016/j.ijhydene.2018.09.104
Google Scholar
[32]
R. A. Antunes, M. C. L. De Oliveira, G. Ett, V. Ett, Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance, Journal of Power Sources. 196, 6 (2011) 2945-2961.
DOI: 10.1016/j.jpowsour.2010.12.041
Google Scholar
[33]
P. Pötschke, D. R. Paul, Formation of co-continuous structures in melt-mixed immiscible polymer blends, Journal of Macromolecular Science, Part C: Polymer Reviews. 43, 1 (2003) 87-141.
DOI: 10.1081/mc-120018022
Google Scholar
[34]
Veenstra, H.; van Lent, B. J. J.; van Dam, J.; de Boer, A. P., Co-continuous morphologies in polymer blends with SEBS block copolymers, Polymer. 40, 24 (1999) 6661-6672.
DOI: 10.1016/s0032-3861(98)00875-1
Google Scholar
[35]
A. Graziano, S. Jaffer, M. Sain, Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior, Journal of Elastomers & Plastics. 51, 4 (2019) 291-336.
DOI: 10.1177/0095244318783806
Google Scholar
[36]
R. Taherian, Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites, Compos Sci Technol. 123 (2016) 17-31.
Google Scholar
[37]
Y. Pan, X. Liu, X. Hao, Z. Starý, D. W. Schubert, Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology, Eur. Polym. J. 78 (2016) 106-115.
DOI: 10.1016/j.eurpolymj.2016.03.019
Google Scholar
[38]
O. A. Alo, I. O. Otunniyi, C. Pienaar, Development of graphite‐filled polymer blends for application in bipolar plates, Polym. Compos. 41, 8 (2020) 3364-3375.
DOI: 10.1002/pc.25625
Google Scholar
[39]
R. Salehiyan, S. S. Ray, Tuning the conductivity of nanocomposites through nanoparticle migration and interface crossing in immiscible polymer blends: A review on fundamental understanding, Macromolecular Materials and Engineering. 304 (2019) 1800431.
DOI: 10.1002/mame.201800431
Google Scholar
[40]
B. Krause, A. Cohnen, P. Pötschke, T. Hickmann, D. Koppler, B Proksch, T. Kersting, C. Hopmann, In Influence of graphite and SEBS addition on thermal and electrical conductivity and mechanical properties of polypropylene composites, AIP Conference Proceedings, AIP Publishing LLC: 2017; p.030009.
DOI: 10.1063/1.5016696
Google Scholar
[41]
A. Naji, B. Krause, P. Pötschke, A. Ameli, Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications, Polymer Composites. 40, 8 (2019) 3189-3198.
DOI: 10.1002/pc.25169
Google Scholar
[42]
W. Thongruang, R. J. Spontak, C. M. Balik, Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber, Polymer. 43, 8 (2002) 2279-2286.
DOI: 10.1016/s0032-3861(02)00043-5
Google Scholar
[43]
R. Dweiri, J. Sahari, Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC), Journal of Power Sources. 171, 2 (2007) 424-432.
DOI: 10.1016/j.jpowsour.2007.05.106
Google Scholar
[44]
H. Suherman, Y. Mahyoedin, E. Septe, R. Rizade, Properties of graphite/epoxy composites: the in-plane conductivity, tensile strength and shore hardness. AIMS Materials Science, (2019).
DOI: 10.3934/matersci.2019.2.165
Google Scholar
[45]
Y. Wang, Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC). University of Waterloo, Ontario, (2006).
Google Scholar
[46]
A. Fina, Z. Han, G. Saracco, U. Gross, M. Mainil, Morphology and conduction properties of graphite‐filled immiscible PVDF/PPgMA blends. Polym. Adv. Technol. 23, 12 (2012) 1572-1579.
DOI: 10.1002/pat.3031
Google Scholar
[47]
E. T. Thostenson, C. Li, T. W. Chou, Nanocomposites in context, Composites Science and Technology. 65, 3-4 (2005) 491-516.
DOI: 10.1016/j.compscitech.2004.11.003
Google Scholar
[48]
S. Radhakrishnan, B. T. S. Ramanujam, A. Adhikari, S. Sivaram, High-temperature, polymer–graphite hybrid composites for bipolar plates: effect of processing conditions on electrical properties, J. Power Sources. 163, 2 (2007) 702-707.
DOI: 10.1016/j.jpowsour.2006.08.019
Google Scholar
[49]
L. Li, H. Shi, Z. Liu, L. Mi, G. Zheng, C. Liu, K. Dai, C. Shen, Anisotropic Conductive Polymer Composites Based on High Density Polyethylene/Carbon Nanotube/Polyoxyethylene Mixtures for Microcircuits Interconnection and Organic Vapor Sensor, ACS Appl. Nano Mater. 2, 6 (2019) 3636-3647.
DOI: 10.1021/acsanm.9b00584
Google Scholar
[50]
N. A. M. Radzuan, A. B. Sulong, M. R.Somalu, Influence the Fillers Orientation: A Short Review. (2018).
DOI: 10.20944/preprints201808.0193.v1
Google Scholar