Study of Quench Sensitivity and Microstructure Evolution of Al-Mg-Si Alloy Sheets

Article Preview

Abstract:

In the actual industrial production process, it is usually appropriate to reduce the cooling rate and control the residual stress. In this study, the Time-Temperature-Property curve of Al-Mg-Si alloy sheets was measured by interruption quenching and subsequent artificial aging method. The microstructure evolution of Al-Mg-Si alloy was carefully characterized using optical microscopy (OM) and transmission electron microscopy (TEM). It was found that the nose temperature of the TTP curve drawn by experiment was ~360°C, closing to the nose temperature of ~365°C obtained from the simulated TTT curves. The number of equilibrium phase rapidly increased with the increasing of holding time, while no obvious equilibrium phase formation at the low temperature region and high temperature region. The critical cooling rate is 14.3°C/s, the determination of the critical cooling rate has important reference value for the control of alloy sheet during quenching process in the actual industrial production. The quenching sensitive region of the Al-Mg-Si alloy sheet is between 290°C and 440°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-31

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.S. Miller, L. Zhuang, J. Bottema, et al. Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A 280 (2000) 37-49.

Google Scholar

[2] J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China 24 (2014) 1995-2002.

Google Scholar

[3] Z. Yang, X. Jiang, X. Zhang, et al. Natural ageing clustering under different quenching conditions in an Al-Mg-Si alloy, Scr. Mater. 190 (2020) 179-182.

DOI: 10.1016/j.scriptamat.2020.08.046

Google Scholar

[4] L. Lin, Z. Liu, B. Song, et al. Effects of germanium on quench sensitivity in Al-Zn-Mg-Zr alloy, Mater. Des. 86 (2015) 679-685.

DOI: 10.1016/j.matdes.2015.07.169

Google Scholar

[5] J.S. Chen, X.W. Li, B.Q. Xiong, et al. Quench sensitivity of novel Al-Zn-Mg-Cu alloys containing different Cu contents, Rare Met. 39 (2020) 1395-1401.

DOI: 10.1007/s12598-017-0981-y

Google Scholar

[6] S. Liu, X. Wang, Q. Pan, et al. Investigation of microstructure evolution and quench sensitivity of Al-Mg-Si-Mn-Cr alloy during isothermal treatment, J. Alloys Compd. 826 (2020) 154144.

DOI: 10.1016/j.jallcom.2020.154144

Google Scholar

[7] B.C. Shang, Z.M. Yin, G. Wang, et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy, Mater. Des. 32 (2011) 3818-3822.

DOI: 10.1016/j.matdes.2011.03.016

Google Scholar

[8] G.P. Dolan, J.S. Robinson. Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis, J. Mater. Process Tech. 153-154 (2004) 346-351.

DOI: 10.1016/j.jmatprotec.2004.04.065

Google Scholar

[9] G. Gao, C. He, Y. Li, Influence of different solution methods on microstructure, precipitation behavior and mechanical properties of Al-Mg-Si alloy, Trans. Nonferrous Met. Soc. China 28 (2018) 839-847.

DOI: 10.1016/s1003-6326(18)64717-x

Google Scholar

[10] G.H. Tao, C.H. Liu, J.H. Chen, et al. The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys, Mater. Sci. Eng. A 642 (2015) 241-248.

DOI: 10.1016/j.msea.2015.06.090

Google Scholar

[11] A.V. Mikhaylovskaya, A.A. Kishchik, A.D. Kotov, et al. Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy, Mater. Sci. Eng. A 760 (2019) 37-46.

DOI: 10.1016/j.msea.2019.05.099

Google Scholar

[12] A. Serizawa, S. Hirosawa, T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy, Metall. Mater. Trans. A 39 (2008) 243-251.

DOI: 10.1007/s11661-007-9438-5

Google Scholar

[13] H.W. Zandbergen, S.J. Andersen, J. Jansen, Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies, Science 277 (1997) 1221-1225.

DOI: 10.1126/science.277.5330.1221

Google Scholar

[14] G. Gao, Y. Li, Z. Wang, et al. Study of retrogression response in naturally and multi-step aged Al-Mg-Si automotive sheets, J. Alloys Compd. 753 (2018) 457-464.

DOI: 10.1016/j.jallcom.2018.04.198

Google Scholar

[15] P.H. Ninive, A. Strandlie, S. Gulbrandsen-Dahl, et al. Detailed atomistic insight into the β" phase in Al-Mg-Si alloys, Acta Mater. 69 (2014) 126-134.

DOI: 10.1016/j.actamat.2014.01.052

Google Scholar

[16] S. Zhu, Z.H. Li, L.Z. Yan, et al. Transformation behavior of precipitates during artificial aging at 170°C in Al-Mg-Si-Cu alloys with and without Zn addition, Rare Met. 40 (2020) 1907-1914.

DOI: 10.1007/s12598-020-01427-z

Google Scholar

[17] Y.X. Lai, B.C. Jiang, C.H. Liu, et al. Low-alloy-correlated reversal of the precipitation sequence in Al-Mg-Si alloys, J. Alloys Compd. 701 (2017) 94-98.

DOI: 10.1016/j.jallcom.2017.01.095

Google Scholar

[18] S. Pogatscher, H. Antrekowitsch, H. Leitner, et al. Influence of the thermal route on the peak-aged microstructures in an Al-Mg-Si aluminum alloy, Scr. Mater. 68 (2013) 158-161.

DOI: 10.1016/j.scriptamat.2012.10.006

Google Scholar

[19] R.K.W. Marceau, A. de Vaucorbeil, G. Sha, et al. Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling, Acta Mater. 61 (2013) 7285-7303.

DOI: 10.1016/j.actamat.2013.08.033

Google Scholar

[20] Y. Weng, L. Ding, Y. Xu, et al. Effect of In addition on the precipitation behavior and mechanical property for Al-Mg-Si alloys, J. Alloys Compd. 895 (2022) 162685.

DOI: 10.1016/j.jallcom.2021.162685

Google Scholar

[21] P. Sepehrband, X. Wang, H. Jin, et al. Interactive microstructural phenomena during non-isothermal annealing of an Al-Mg-Si-Cu alloy, Mater. Charact. 137 (2018) 212-221.

DOI: 10.1016/j.matchar.2018.01.014

Google Scholar

[22] L Gang, J Wang, Y Liu, et al. Effect of heating rate during solution treatment on the bendability of Al-Mg-Si alloys, Mater. Sci. Eng. A 791 (2020) 139604.

DOI: 10.1016/j.msea.2020.139604

Google Scholar

[23] Z Fan, X Lei, L Wang, et al. Influence of quenching rate and aging on bendability of AA6016 sheet, Mater. Sci. Eng. A 730 (2018) 317-327.

DOI: 10.1016/j.msea.2018.05.108

Google Scholar

[24] M Yang, H Chen, A Orekhov, et al. Quantified contribution of β" and β' precipitates to the strengthening of an aged Al-Mg-Si alloy, Mater. Sci. Eng. A 774 (2020) 138776.

DOI: 10.1016/j.msea.2019.138776

Google Scholar

[25] Y. Kim, R.K. Mishra, A.K. Sachdev, et al. A combined experimental-analytical modeling study of the artificial aging response of Al-Mg-Si alloys, Mater. Sci. Eng. A 820 (2021) 141566.

DOI: 10.1016/j.msea.2021.141566

Google Scholar