Effect of Sr and Ni Addition on Microstructure, Tensile Behavior and Electrical Conductivity of Squeeze Cast Al-6Si-3Cu Al Alloy

Article Preview

Abstract:

Mechanical strengths and electrical conductivity are the very important engineering properties of lightweight aluminum (Al) alloys used in automobiles, especially for battery-powered electric vehicles (BEV). However, the main issue is that the mechanical properties and the electrical conductivity of Al alloys are mutually exclusive. This study aims to simultaneously improve both the tensile properties and the electrical conductivity of the squeeze as-cast Al-6wt% Si-3wt% Cu by modifying its microstructure with the addition of nickel (Ni) and strontium (Sr). In comparison to those of the alloy free of Sr and Ni, the additions of 0.03 wt.% Sr and 0.5 wt.% Ni in the Al-6Si-3Cu alloy significantly improved the ultimate tensile strength, yield strength and electrical conductivity. This was because the addition of Ni element, as a transition element, collaborated with Cu to form fine intermetallic Al-Cu-Ni phases for dispersion strengthening. Also, the modification of the Si morphology from micron needles to nanoparticles by the Sr addition enhanced both the strengths and electrical conductivity of the developed alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-14

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Liu, P. Han, A.M.A. Bazzi, A comparison of rotor bar material of squirrel-cage induction machines for efficiency enhancement purposes, EPE'15 ECCE-Europe, pp.1-7.

DOI: 10.1109/epe.2015.7311778

Google Scholar

[2] T. Shi, F. Zhao, H. Hao, Z. Liu, Costs, Benefits and Range: Application of Lightweight Technology in Electric Vehicles, SAE Technical Paper 2019-01-0724, (2019).

DOI: 10.4271/2019-01-0724

Google Scholar

[3] R.W. Cahn, P. Haasen, E.J. Kramer, Material science and technology, vol 8/9. Wiley, New York, (2005).

Google Scholar

[4] J.A. Garcı́a-Hinojosa, C.R. Gonzalez, G.M. Gonzalez, Y. Houbaert, Structure and properties of Al–7Si–Ni and Al–7Si–Cu cast alloys nonmodified and modified with Sr, J. Mater. Process. Technol. 143 (2003) 306-310.

DOI: 10.1016/s0924-0136(03)00479-5

Google Scholar

[5] G. Rajaram, S. Kumaran, T.S. Rao, Effect of graphite and transition elements (Cu, Ni) on high temperature tensile behaviour of Al–Si Alloys, Mater. Chem. Phys.128 (2011) 62-69.

DOI: 10.1016/j.matchemphys.2011.02.069

Google Scholar

[6] Z. Asghar, G. Requena, H.P. Degischer, P. Cloetens, Three-dimensional study of Ni aluminides in an AlSi12 alloy by means of light optical and synchrotron microtomography, Acta Mater. 57 (2009) 4125-4132.

DOI: 10.1016/j.actamat.2009.05.010

Google Scholar

[7] Z. Asghar, G. Requena, F. Kubel, The role of Ni and Fe aluminides on the elevated temperature strength of an AlSi12 alloy, Mater. Sci. Eng. 527 (2010) 5691-5698.

DOI: 10.1016/j.msea.2010.05.033

Google Scholar

[8] J.E. Gruzleski, B.M. Closset, The treatment of liquid aluminum-silicon alloys. Amer Foundry Society, California, (1990).

Google Scholar

[9] A.K. Dahle, K. Nogita, S.D. McDonald, J.W. Zindel, L.M. Hogan, Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels, Metall Mater Trans A Phys Metall Mater Sci. 32 (2001) 949-960.

DOI: 10.1007/s11661-001-0352-y

Google Scholar

[10] Y.H. Cho, H.C. Lee, K.H. Oh, A.K. Dahle, Effect of strontium and phosphorus on eutectic Al-Si nucleation and formation of β-Al 5 FeSi in hypoeutectic Al-Si foundry alloys. Metall Mater Trans A Phys Metall Mater Sci. 39 (2008) 2435-2448.

DOI: 10.1007/s11661-008-9580-8

Google Scholar

[11] A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al–Si Alloys. Mater. Sci. Eng, 413 (2005) 243-248.

DOI: 10.1016/j.msea.2005.09.055

Google Scholar

[12] M.H. Mulazimoglu, R.A.L. Drew, J.E. Gruzleski, The effect of strontium on the electrical resistivity and conductivity of aluminum-silicon alloys. Metall Mater Trans A, 18 (1991) 941-947.

DOI: 10.1007/bf02668542

Google Scholar

[13] S.Z. Lu, A. Hellawell, The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning. Metall Mater Trans A. 18 (1987) 1721-1733.

DOI: 10.1007/bf02646204

Google Scholar

[14] Y. Li, Y. Yang, Y. Wu, L Wang, X, Liu, Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Mater. Sci. Eng 527 (2010) 7132-7137.

DOI: 10.1016/j.msea.2010.07.073

Google Scholar

[15] J. Campbell, Complete casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann, London, (2015).

Google Scholar

[16] J. Campbell, M. Tiryakioğlu, Review of effect of P and Sr on modification and porosity development in Al–Si alloys. Mater. Sci. Technol, 26 (2010) 262-268.

DOI: 10.1179/174328409x425227

Google Scholar

[17] J. Zhou, L. Ren, X. Geng, L. Fang, H. Hu, As-cast magnesium AM60-based hybrid nanocomposite containing alumina fibres and nanoparticles: Microstructure and tensile behavior, Mater. Sci. Eng. A, 740 (2019) 305-314.

DOI: 10.1016/j.msea.2017.10.070

Google Scholar

[18] A. Russell, L.L. Kok, Structure-property relations in nonferrous metals. John Wiley & Sons, Canada (2005).

Google Scholar

[19] O.A. Kaibyshev Superplasticity of alloys, intermetallides and ceramics. Springer Science & Business Media, Basingstoke, (2012).

Google Scholar

[20] F.C. Campbell, Elements of metallurgy and engineering alloys. ASM International, Ohio, (2008).

Google Scholar

[21] B. Larson, Toughness, NDT Education Resource Center, Iowa, (2001).

Google Scholar

[22] M.H. Mulazimoglu, R.A.L. Drew, J.E. Gruzleski, The electrical conductivity of cast Al− Si alloys in the range 2 to 12.6 wt pct silicon. Metall. Trans A, 20 (1989) 383-389.

DOI: 10.1007/bf02653917

Google Scholar

[23] S.S. Shin, M.Y. Kim, G.Y. Yeom, The Effect of Sr Addition and Holding Time on Mechanical Property and Electrical Conductivity of Al-10.5% Si-2% Cu Secondary Die-casting Alloys. J. Korea foundry soc, 30 (2010) 205-209.

Google Scholar