An Investigation on Nano-Enhanced Phase Change Materials: Carbon-Based Nanoparticles

Article Preview

Abstract:

The current research presents an overview of four types of carbon nanoparticles that are: carbon black nano powder, multi-walled carbon nanotube, graphene, and graphite. The aim of this paper is to show the importance of carbon-based nano-enhanced phase change materials (NEPCM). The effect of using different types of nanoparticles at various loading concentrations has been examined. It was found that the effective thermal conductivity can be enhanced by increasing the nanoparticles loading concentration regardless of NEPCM type. However, this may be accompanied by a slower melting process which also depends on the nanoparticle’s density. Thus, the duration of storage is reported as a crucial factor to check the feasibility of using such nanoparticles. The highest reported thermal conductivity enhancement is ~300% considering CaCl2.6H2O as a phase change material with 30 wt.% multi-walled carbon nanotube.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-16

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Muhammad Tawalbeh, Amani Al-Othman, Nasim Ashoobi, Malek Alkasrawi, Classifications of Thermal Energy Storage Materials, Reference Module in Materials Science and Materials Engineering, Elsevier, 2021, ISBN 9780128035818, https://doi.org/10.1016/B978-0-12-815732-9.00064-4.

DOI: 10.1016/b978-0-12-815732-9.00064-4

Google Scholar

[2] Montaser Mahmoud, Mohamad Ramadan, Abdul-Ghani Olabi, Keith Pullen, Sumsun Naher, A review of mechanical energy storage systems combined with wind and solar applications, Energy Conversion and Management, Volume 210, 2020, 112670, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2020.112670.

DOI: 10.1016/j.enconman.2020.112670

Google Scholar

[3] Montaser Mahmoud, Mohamad Ramadan, Keith Pullen, Mohammad A. Abdelkareem, Abdul H. Alami, Abdul-Ghani Olabi, Sumsun Naher, Foam-Based Composite Phase Change Materials, Reference Module in Materials Science and Materials Engineering, Elsevier, 2021, ISBN 9780128035818, https://doi.org/10.1016/B978-0-12-815732-9.00083-8.

DOI: 10.1016/b978-0-12-815732-9.00083-8

Google Scholar

[4] Charles A. Ikutegbe, Mohammed M. Farid, Application of phase change material foam composites in the built environment: A critical review, Renewable and Sustainable Energy Reviews, Volume 131, 2020, 110008, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110008.

DOI: 10.1016/j.rser.2020.110008

Google Scholar

[5] Montaser Mahmoud, Mohamad Ramadan, Keith Pullen, Mohammad A. Abdelkareem, Ahmad Baroutaji, Abdul-Ghani Olabi, Sumsun Naher, Advances in Shape-Stabilized Phase Change Materials, Reference Module in Materials Science and Materials Engineering, Elsevier, 2021, ISBN 9780128035818, https://doi.org/10.1016/B978-0-12-815732-9.00094-2.

DOI: 10.1016/b978-0-12-815732-9.00094-2

Google Scholar

[6] Shuai Zhang, Daili Feng, Lei Shi, Li Wang, Yingai Jin, Limei Tian, Ziyuan Li, Guoyong Wang, Lei Zhao, Yuying Yan, A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage, Renewable and Sustainable Energy Reviews, Volume 135, 2021, 110127, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110127.

DOI: 10.1016/j.rser.2020.110127

Google Scholar

[7] Montaser Mahmoud, Mohamad Ramadan, Keith Pullen, Mohammad A. Abdelkareem, Abdul H. Alami, Abdul-Ghani Olabi, Sumsun Naher, Using Nanoparticles for Thermal Enhancement of Phase Change Materials, Reference Module in Materials Science and Materials Engineering, Elsevier, 2021, ISBN 9780128035818, https://doi.org/10.1016/B978-0-12-815732-9.00111-X.

DOI: 10.1016/b978-0-12-815732-9.00111-x

Google Scholar

[8] Teng Xiong, Long Zheng, Kwok Wei Shah, Nano-enhanced phase change materials (NePCMs): A review of numerical simulations, Applied Thermal Engineering, Volume 178, 2020, 115492, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2020.115492.

DOI: 10.1016/j.applthermaleng.2020.115492

Google Scholar

[9] Xiaoqin Sun, Lihui Liu, Yajing Mo, Jie Li, Chuanchang Li, Enhanced thermal energy storage of a paraffin-based phase change material (PCM) using nano carbons, Applied Thermal Engineering, Volume 181, 2020, 115992, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2020.115992.

DOI: 10.1016/j.applthermaleng.2020.115992

Google Scholar

[10] Zi-Rui Li, Nan Hu, Jia Liu, Run-Hui Zhang, Li-Wu Fan, Revisiting melting heat transfer of nano-enhanced phase change materials (NePCM) in differentially-heated rectangular cavities using thermochromic liquid crystal (TLC) thermography, International Journal of Heat and Mass Transfer, Volume 159, 2020, 120119, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2020.120119.

DOI: 10.1016/j.ijheatmasstransfer.2020.120119

Google Scholar

[11] A.S. Abdelrazik, F.A. Al-Sulaiman, R. Saidur, Numerical investigation of the effects of the nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/thermal systems, Energy Conversion and Management, Volume 205, 2020, 112449, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2019.112449.

DOI: 10.1016/j.enconman.2019.112449

Google Scholar

[12] M. Sivashankar, C. Selvam, S. Manikandan, Sivasankaran Harish, Performance improvement in concentrated photovoltaics using nano-enhanced phase change material with graphene nanoplatelets, Energy, Volume 208, 2020, 118408, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2020.118408.

DOI: 10.1016/j.energy.2020.118408

Google Scholar

[13] S.M. Shafee, K. Gnanasekaran, G. Ravikumar Solomon, P.S. Arshi Banu, Analysis of heat transfer mechanisms during energy storage in a vertical cylindrical unit filled with nano enhanced phase change material for free cooling applications, Materials Today: Proceedings, Volume 22, Part 3, 2020, Pages 743-750, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2019.10.080.

DOI: 10.1016/j.matpr.2019.10.080

Google Scholar

[14] Amit Kumar Mishra, B.B. Lahiri, Vijay Solomon, John Philip, Nano-inclusion aided thermal conductivity enhancement in palmitic acid/di-methyl formamide phase change material for latent heat thermal energy storage, Thermochimica Acta, Volume 678, 2019, 178309, ISSN 0040-6031, https://doi.org/10.1016/j.tca.2019.178309.

DOI: 10.1016/j.tca.2019.178309

Google Scholar

[15] A.S. Abdelrazik, R. Saidur, F.A. Al-Sulaiman, Thermal regulation and performance assessment of a hybrid photovoltaic/thermal system using different combinations of nano-enhanced phase change materials, Solar Energy Materials and Solar Cells, Volume 215, 2020, 110645, ISSN 0927-0248, https://doi.org/10.1016/j.solmat.2020.110645.

DOI: 10.1016/j.solmat.2020.110645

Google Scholar

[16] Amit Kumar Mishra, B.B. Lahiri, John Philip, Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage, Energy, Volume 191, 2020, 116572, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2019.116572.

DOI: 10.1016/j.energy.2019.116572

Google Scholar

[17] M. Alizadeh, Kh. Hosseinzadeh, M.H. Shahavi, D.D. Ganji, Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material, Applied Thermal Engineering, Volume 163, 2019, 114436, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2019.114436.

DOI: 10.1016/j.applthermaleng.2019.114436

Google Scholar

[18] Adeel Arshad, Mark Jabbal, Yuying Yan, Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics, Energy Conversion and Management, Volume 205, 2020, 112444, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2019.112444.

DOI: 10.1016/j.enconman.2019.112444

Google Scholar