[1]
R.C. Reed, The Superalloys, Cambridge University Press, Cambridge, UK, 2006. ISBN 978-0-521-85904-2.
Google Scholar
[2]
G.L.R. Durber, Stress rupture properties and structural stability of the BC alloys, Proc. Conf. High Temperature Alloys, September 1978, Liege, pp.459-465.
Google Scholar
[3]
G.L.R Durber, C.A. Hamersley, Production experience with the boron modified nickel high temperature casting alloys, Metallurgia 46 (1979) 628-633.
Google Scholar
[4]
A.V. Shulga, Boron and carbon behavior in the cast Ni-base superalloy EP962, J. Alloys Compd. 436 (2007) 155-160.
DOI: 10.1016/j.jallcom.2006.07.051
Google Scholar
[5]
P.J. Zhou, J.J. Xu, X.F. Sun, H.R. Guan, Z.Q. Hu, The role of boron on a convential nickel-based superalloy, Mater. Sci. Eng. A, 491 (2008) 159-163.
Google Scholar
[6]
A.M. Da Silva Costa, C.A. Nunes, R. Baldan, G.C. Coelho, Thermodynamic evaluation of the phase stability and microstructural characterization of a cast B1914 superalloy, J. Mater Eng. Performance 23 (2014) 819-825.
DOI: 10.1007/s11665-013-0814-6
Google Scholar
[7]
M. Kvapilova, P. Kral, J. Dvorak, V.Sklenicka, High temperature creep behaviour of cast nickel-based superalloys INC 713 LC, B1914 and MAR -M247, Metals 11 (2021) No.152.
DOI: 10.3390/met11010152
Google Scholar
[8]
V. Sklenička, M. Kvapilová, P. Král, J. Dvořák, M. Svoboda, B. Podhorná, J. Zýka, K. Hrbáček, A. Joch, Degradation processes in high-temperature creep of cast cobalt-based superalloys, Mater. Charact. 144 (2018) 479-489.
DOI: 10.1016/j.matchar.2018.08.006
Google Scholar
[9]
K. Maruyama, Fracture mechanism map and fundamental aspects of creep fracture, in F. Abe, T-U. Kern, R. Viswanathan (Eds.), Creep-resistant steel; Woodhead Publishing Ltd., Cambridge, England, 2008, Chapter No. 12, pp.350-364.
DOI: 10.1533/9781845694012.2.350
Google Scholar
[10]
J. Čadek, Creep in metallic materials, Academia, Prague, (1988).
Google Scholar
[11]
M.J. Starink, R.C. Thomson, Modelling microstructural evolution in conventionally cast Ni-based superalloys during high temperature service, in: Strang A., McLean M (Eds.), Modelling of microstructural evolution in creep resistant materials, IOM Communications Ltd., London, UK, 19998, pp.357-371.
DOI: 10.1887/0750307420/b873c23
Google Scholar
[12]
H. Riedel, Fracture at High Temperatures, Springer-Verlag, Berlin, Germany, (1987).
Google Scholar
[13]
C.C. Law, M.J. Blackburn, Creep-rupture in powder metallurgical nickel-base super-alloys at intermediate temperatures, Met. Trans. A 11 (1980) 495-507.
DOI: 10.1007/bf02654573
Google Scholar
[14]
K. Shiokawa, J.R. Weertman, Studies of nucleation mechanisms and the role of residual stresses in the grain boundary cavitation of a super-alloy. Acta Metall. 31 (1983) 993-1004.
DOI: 10.1016/0001-6160(83)90194-3
Google Scholar
[15]
V. Sklenička, High temperature intergranular damage and fracture, Mater. Sci. Eng. A 234 (1997) 30-36.
Google Scholar