p.3
p.9
p.17
p.37
p.47
p.57
p.73
p.85
Date Palm Industrial Benefits and Secondary Metabolites Production by Biotechnology Approach
Abstract:
Abstract. Date palm (Phoenix dactylifera L.), commonly grown in the hot arid zones predominantly in the Middle East and North Africa, became one of the highly important cultivated palms around the world, because of the multiple processing utilization of the edible fruit, and the various industry- uses of the whole tree parts. Moreover, there are intensive studies indicated the higher nutraceutical value of the essential biological compounds in the date palm tissues like (carotenoids, phenols, lignin, flavonoids, tannins and sterols) and their therapeutic aspects, such as antioxidants (lutein, β-carotene and vitamin A), antibacterial (syringic acid, vanillic acid and gallic acid), antifungal (tannic acid) and anti-cancer (quercetin) and anti-sterility (β-sitosterol and stigmasterol). Meanwhile, the biotechnology approach provides the production possibilities of the plants' secondary metabolites, using cell suspension cultures and the scale-up by bioreactors. Also, using the biotic and abiotic elicitors as important factors inducing bioactive compounds accumulation in plants tissue cultures. This review describes the progress in studying the in vitro production of some important secondary metabolites from the date palm tissues.
Info:
Periodical:
Pages:
17-35
Citation:
Online since:
July 2022
Price:
Сopyright:
© 2022 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] C. Chao, R.R. Krueger, The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42(5) (2007)1077–1082 doi: doi.org/10.21273/HORTSCI. .42.5.1077.
[2] A. El Hadrami, J.M. Al-Khayri, Socioeconomic and traditional importance of date palm. Emir J food Agric 24(5) (2012) 371–385.
[3] M. Tengberg, Beginnings and early history of date palm garden cultivation in the Middle East. J Arid Environ 86(1) (2012)139–147.
[4] S. Gantait, M.M. El-Dawayati, J. Panigrahi, C. Labrooy, S. Kumar Verma, The retrospect and prospect of the applications of biotechnology in (Phoenix dactylifera L.), App.Microbiol. and biotech.102 (19) (2018), 8229-8259.
[5] D. Johnson., Introduction: date palm biotechnology from theory to practice. In: Jain SM, [6]-Al-Khayri JM, Johnson D (eds) Date palm biotechnology. Springer, Dordrecht (2011) p.1–11.
[7] S. Jain M., Date palm biotechnology: Current status and prospective-an overview. Emirates J food Agric 24 (5) (2012)386–399.
[8] R. Al-Alawi, J.H. Al-Mashiqri, J.S.M. Al-Nadabi, et al, Date palm tree (Phoenix dactylifera L.)-Natural products and therapeutic options. Front. Plant Sci. 8 (845) (2017) 1–12.
[9] A. Zaid, P.F. de Wet, Botanical and systematic description of the date palm. In: Zaid A (ed), Date palm cultivation. Rome, Italy: FAO, Plant Production and Protection (2002) p.1–25.
[10] M.A. Afiq, R.A. Rahman, Y.C. Man, H.A. Al-Kahtani, T.S.T Mansor, Date seed and date seed oil. Int. Food Res. J., 20(5) (2013) p.(2035).
[11] Z.X. Tang, L.E. Shi, S.M. Aleid, Date fruit: chemical composition, nutritional and medicinal values, products. J Sci Food Agric 93(10) (2013) 2351–2361.
DOI: 10.1002/jsfa.6154
[12] S. Ghnimi, R. Almansoori, Quality evaluation of coffee-like beverage from date seeds Phoenix dactylifera L, J. Food Proc. Tech. 6 (2015)1–6.
[13] R. Salomón-Torres, B. Valdez-Salas, S. Norzagaray-Plasencia, Date Palm: Source of Foods, Sweets and Beverages. In The Date Palm Genome, 2, 2021 pp.3-26. Springer, Cham.
[14] M., Chandrasekaran, A.H. Bahkali, Valorization of date palm (Phoenix dactylifera L.) fruit processing by-products and wastes using bioprocess technology–Review. Saudi J. Biol. Sci. 20(2) (2013) 105–120.
[15] M.Q. Al-Mssallem, R.M. Alqurashi, J.M. Al-Khayri, Bioactive compounds of date palm (Phoenix dactylifera L.). In: H. N. Murthy, V. A. Bapat (eds.), Bioactive Compounds in Underutilized Fruits and Nuts, Reference Series in Photochemistry. 2019 p.1–11. Springer Nature, Switzerland, doi.org/10.1007/978-3-030-06120-3_6-1.
[16] R.A. Nasser, M.Z.M. Salem, S. Hiziroglu et al, Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production. Energies 9 (2016) 374.
DOI: 10.3390/en9050374
[17] W., Ghori, N., Saba, M., Jawaid, M., Asim, A review on date palm (phoenix dactylifera) fibers and its polymer composites. In (IOP conference series: materials science and engineering, 368(1) 2018 p.012009). IOP Publishing.
[18] S. Awad, Y. Zhou, E. Katsou, et al. A Critical Review on Date Palm Tree (Phoenix dactylifera L.) Fibres and Their Uses in Bio-composites. Waste Biomass (12) 2021, 2853–2887.
[19] G. Kabir, B.H Hameed, Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable and Sustainable Energy Reviews, Materials Sci. Forum Vol. 1051 (70) (2017) 945-967.
[20] Y. Makkawi, Y. El Sayed, M. Salih, P. Nancarrow, S. Banks, T. Bridgwater, Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renewable energy (143) (2019) 719-730.
[21] R.A. Nasser, H.A. Al-Mefarrej, Midribs of date palm as a raw material for wood-cement composite industry in Saudi Arabia. World Appl. Sci.J. 15(12) (2011) 1651–1658.
[22] A.R.A. Usman, A. Abduljabbar, M. Vithanage et al, Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis (115) (2015) 392–400 doi.org/10.1016/j.jaap.2015.08.016.
[23] M.A. Al-Farsi, C.Y. Lee, Nutritional and functional properties of dates: A review. Crit. Rev. Food Sci. Nutr. 48(10) (2008) 877–887.
[24] M. Ramchoun, C. Alem, K. Ghafoor, J. Ennassir, Y. F .Zegzouti, Functional composition and antioxidant activities of eight Moroccan date fruit varieties (Phoenix dactylifera L.). J. Saudi Soci.Agr. Sci, 16(3) (2017) 257-264.
[25] A.M. Martín-Sánchez, S. Cherif, J. Ben-Abda, X. Barber-Vallés, J.Á. PérezÁlvarez, [25]-E., Sayas-Barberá, Phytochemicals in date co-products and their antioxidant activity. Food Chem. (158) (2014) 513–520.
[26] F. Biglari, A.F. Al Karkhi, M. Easa, Antioxidant activity and Phenolic content of various date palm (Phoenix dactylifera L.) fruits from Iran. Food Chem. 107(2007) 1636–1641.
[27] A. El Hadrami, F. Daayf, I. El Hadrami Secondary metabolites of date palm. In: Jain S, Al-Khayri J, Johnson D (eds) Date palm biotechnology. Springer, Dordrecht p.653–674.
[28] Daayf F, Lattanzio V (2009) Recent advances in polyphenol research, Wiley Inter Science, New York. Vol 1.
[29] P.M. Naik, J.M. Al-Khayri, Cell suspension culture as a means to produce polyphenols from date palm (Phoenix dactylifera L.). Ciência e Agrotecnologia 42(5) (2018):464–473.
[30] L.U. Thompson, B.A. Boucher, Z. Liu, et al, Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer 54(2006)184–20.
[31] E.A. Amira, S.E. Behija, M. Beligh, L. Lamia, I. Manel, H. Mohamed, et al, Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J. Agric. Food Chem. 60(2012) 10896–10902.
DOI: 10.1021/jf302602v
[32] M. Lemine, F. Mint, M.V.O., Mohamed Ahmed, L. Ben Mohamed Maoulainine, Z. Bouna et al. Antioxidant activity of various Mauritanian date palm (Phoenix dactylifera L.) fruits at two edible ripening stages. Food Sci. Nutr. 2(2014) 700–705.
DOI: 10.1002/fsn3.167
[33] Y.J. Hong, F.A. Tomas-Barberan, A.A, Kader, A.E. Mitchell, The flavonoid glycosides and procyanidin composition of deglet noor dates (Phoenix dactylifera). J. Agric. Food Chem. 54(2006) 2405–2411doi: 10.1021/jf0581776.
DOI: 10.1021/jf0581776
[34] I. Hamad, H., Abd Elgawad, S., Al Jaouni et al Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules 20(8) (2015) 13620–13641.
[35] H. Borochov-Neori, S., Judeinstein, A., Greenberg, N. Volkova, M. Rosenblat, M. Aviram Antioxidant and antiatherogenic properties of phenolic acid and flavonol fractions of fruits of Amari and Hallawi date (Phoenix dactylifera L.) varieties. J. Agric. Food Chem. 63(2015) 3189–3195.
DOI: 10.1021/jf506094r
[36] M., Al-Farsi, C, Alasalvar, A., Morris, et al. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53(2005)7592–7599 53:7592–7599.
DOI: 10.1021/jf050579q
[37] EB. Saafi, A., El Arem, M. Issaoui, et al, Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia. Int. J. food Sci. Technol. 44(11) (2009)2314–2319.
[38] N, Eid, S, Enani, G, Walton, et al, The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J Nutr Sci 3: (2014). e46.
DOI: 10.1017/jns.2014.16
[39] D.J. Thanekar, N. Dhodi, Gawali et al, Evaluation of antitumor and anti-angiogenic activity of bioactive compounds fromCinnamomum tamala: In vitro, in vivo and in silico approach South African J. Bot. 104(2016) 6–14.
[40] H. El Abed, M. Chakroun, Z. Abdelkafi-Koubaa, N. Drira, N. Marrakchi, H. Mejdoub, [41]-B. Khemakhem. Antioxidant, anti-inflammatory, and antitumoral effects of aqueous ethanoic extract from Phoenix dactylifera L. parthenocarpic dates. BioMed Res. Int.(2018) https://doi.org/10.1155/2018/1542602.
DOI: 10.1155/2018/1542602
[42] R.R. Pujari, N.S. Vyawahare, V.G. Kagathara, Evaluation of antioxidant and neuroprotective effect of date palm (Phoenix dactylifera L.) against bilateral common carotid artery occlusion in rats Indian J. Exp. Biol 49(8) (2011) 627–633.
[43] M.D. Garba, A. Galadima. Anti-diarrhoea and phytochemical evaluation of (Phoniex dactylifera L.) extracts. Elixir Appl. Chem 49(2012) 9808–9812.
[44] S. Belmir, K. Boucherit, Z., Boucherit-Otmani, M.H. Belhachemi, Effect of aqueous extract of date palm fruit (Phoenix dactylifera L.) on therapeutic index of amphotericin B. Phytothérapie 14(2016)97–101.
[45] S.F. El-Sharabasy. Studies on the production of secondary metabolites from date palm by using tissue culture technique. Ph.D. Thesis, Fac Agric, Al-Azhar University, Cairo (2000) p.200.
[46] A.H.S. Rahman, M. Aly, H. Ali, et al, Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and antitumour activity, Int. J. Clin. Exp.Medc.7(2014) 3483–491.
[47] N. Zangiabadi, M. Asadi-Shekaari, V. Sheibani, et al, Date fruit extract is a neuroprotective agent in diabetic peripheral neuropathy in streptozotocin-induced diabetic rats: a multimodal analysis. Oxid Med Cell Longev, 2011 p.9.
DOI: 10.1155/2011/976948
[48] G. Guerrier, R., Berni, J.A. Muñoz-Sanchez, et al. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes (Basel) 9(6) (2018) p.309.
DOI: 10.3390/genes9060309
[49] R.A. Hussein, A.A. El-Anssary, Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In Herbal Medicine. Intech Open (2018).
[50] M. Mazid, T.A. Khan, F. Mohammad. Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2) (2011)232–249.
[51] S.S. ul Hassan, H. Jin, T. Abu-Izneid, et al. Stress-driven discovery in the natural products: A gateway towards new drugs. Biomed Pharmacother 109(2019) 459–467.
[52] S.A. Wilson, S.C. Roberts. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10(3) (2012)249–268.
[53] A.G. Atanasov, B. Waltenberger, E.M. Pferschy-Wenzig, et al, Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 33(8) (2015)1582–1614.
[54] S.N., Jimenez-Garcia, M.A., Vazquez-Cruz, R.G., Guevara-Gonzalez, et al. Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes–a review. Polish J Food Nutr Sci 63(2) (2013) 67–78.
[55] P. Ahmad, M.A. Ahanger, V.P. Singh, et al, Plant metabolites and regulation under environmental stress. Academic Press 1st Edition. (2018) e Book ISBN: 9780128126905.
[56] S. Manorma, S. Archana, K. Ashwani, et al, Enhancement of secondary metabolites in cultured plant cells through stress stimulus. Am J Plant Physiol 6(2) (2011) 50–71.
[57] M. Narayani, S. Srivastava. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16(6) (2017)1227–1252.
[58] I., Smetanska. Production of secondary metabolites using plant cell cultures. In: Food biotech.. Springer, Berlin, Heidelberg(2008) p.187–228.
[59] P.M., Naik, J.M., Al-Khayri. Impact of abiotic elicitors on in vitro production of plant secondary metabolites: a review. J Adv Res Biotech 1(2) (2016)7. doi: http://dx.doi.org/10.15226/2475-4714/1/2/00102.
[60] M. Ochoa-Villarreal, S. Howat, S. Hong, et al, Plant cell culture strategies for the production of natural products. BMB Rep 49(3) (2016) 149.
[61] Kreis W (2019) Exploiting plant cell culture for natural product formation. J Appl Bot FOOD Qual 92:216–225.
[62] J.C. Cardoso, M.E. Oliveira, F. Cardoso, Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Hortic Bras 37(2) (2019)124–132.
[63] N. Khanpour-Ardestani, M., Sharifi, M., Behmanesh. Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: an in vitro approach for acteoside production. Cytotechnology 67(3) (2015)475–485.
[64] S.F. El Sharabasy. Effect of some Micro-Elements on Steroids Production from Embryogenic Callus of in vitro Date Palm Sakkoty and Bartamuda Cultivars. Materials Research Proceedings, 11. (2019).
[65] T. Isah, Stress and defense responses in plant secondary metabolites production. Biol. Res. 52(1) (2019) 39.
[66] C.A. Espinosa-Leal, C.A. Puente-Garza, S. Garcia-Lara. In vitro plant tissue culture: means for production of biological active compounds. Planta 248(1) (2018)1–18.
[67] A.N. Shinde, N. Malpathak, D.P. Fulzele. Studied enhancement strategies for phytoestrogens production in shake flasks by suspension culture of Psoralea corylifolia. Bioresour. Technol. 100(5) (2009)1833–1839.
[68] S.Z.M.R., Jamil, E.R., Rohani, S.N., Baharum, N.M., Noor. Metabolite profiles of callus and cell suspension cultures of mangosteen. 3 Biotech 8(8) (2018) p.322.
[69] P.M. Naik, J.M., Al-Khayri. Extraction and estimation of secondary metabolites from date palm cell suspension cultures. In Date Palm Biotechnology Protocols Volume, Humana Press, New York, NY I (2017) p.319–332.
[70] K. Gokulan, S., Khare, C., Cerniglia. Metabolic Pathways: Production of secondary metabolites of bacteria. In: Batt CA, Tortorello ML (eds.), Encyclopedia of Food Microbiology, vol 2. Elsevier Ltd, Academic Press (2014) p.561–569.
[71] F.R. Pinu, S.G. Villas-Boas, R., Aggio. Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites 7(4) (2017) 53.
[72] B. Andryukov, V. Mikhailov, N. Besednova, The biotechnological potential of secondary metabolites from marine bacteria. J Mar Sci Eng 7(6) (2019)176.
[73] M. Behbahani, M. Shanehsazzadeh, M.J. Hessami, Optimization of callus and cell suspension cultures of Barringtonia racemosa (Lecythidaceae family) for lycopene production. SCI AGR 68(1) (2011) 69–76.
[74] S.F., El-Sharabasy. Effects of some precursors on development of secondary products in tissues and media of embryogenic callus of date palm cv. Sewi Arab. J Biotechnol 7(1) (2004)83–90.
[75] H.S. Taha, A.M., Abdel-El Kawy, M.A.E.K. Fathalla, et al. Implement of DMSO for enhancement and production of phenolic and peroxides compounds in suspension cultures of Egyptian date palm (Zaghlool and Samany) cultivars. J Biotech Biochem 1(2010) p.1–10.
[76] M. Jalil, M.S.M. Annuar, B.C. Tan, et al, Effects of selected physicochemical parameters on zerumbone production of Zingiber zerumbet Smith cell suspension culture. Evid Based Complement Alternat Med (2015) 7 pages, Article ID 757514 doi.org/10.1155/2015/757514.
DOI: 10.1155/2015/757514
[77] Q. Li, M. Tang, Y. Tan, et al. Improved production of chlorogenic acid from cell suspension cultures of Lonicera macranthoids. Trop J Pharm Res 15(5) (2016) 919-927.
DOI: 10.4314/tjpr.v15i5.4
[78] A. Valdiani, O.K. Hansen, U.B. Nielsen, et al, Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 39(1) (2019) 20–34.
[79] M.I. Georgiev, R. Eibl, J.J. Zhong, Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97(9) (2013)3787–3800.
[80] S. Werner, R.W. Maschke, D. Eibl, R. Eibl, Bioreactor technology for sustainable production of plant cell-derived products. Bioprocessing of Plant In Vitro Systems 2018 p.413–432.
[81] R. Eibl, D. Eibl, Plant cell-based bioprocessing. In Cell and Tissue Reaction Engineering Springer, Berlin, Heidelberg 2009 p.315–356.
[82] G. Sivanandhan, M. Arun, S. Mayavan, et al, Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of with an olides in the adventitious root culture of Withania somnifera (L.) Dunal. Appl. Biochem. Biotechnol 168(3) (2012) 681–696.
[83] Y. Yang, M. Sha. A. Beginner's, Guide to Bioprocess Modes–Batch, Fed-Batch, and Continuous Fermentatio.n Eppendorf. Application Note (2019) (408).
[84] L. Palacio, J.J. Cantero, R. Cusido, et al, Phenolic compound production by Larrea divaricata Cav. plant cell cultures and effect of precursor feeding. Process, Biochem 46(1) (2011) 418–422.
[85] S. El-Sharabasy, M. El-Dawayati, Bioreactor steroid production and analysis of date palm embryogenic callus. In Date Palm Biotechnology Protocols, Humana Press, New York, NY Volume I 2017 p.309–318.
[86] Y-T. Chen, Y-C. Shen, M-C. Chang, et al, Precursor-feeding strategy on the triterpenoid production and anti-inflammatory activity of Antrodia cinnamomea. Process Biochem 51(8) (2016) 941–949.
[87] H.S. Taha, S.A. Bekheet, M.K. El-Bahr, A new concept for production and scaling up of bioactive compounds from Egyptian date palm (Zaghlool) cultivar using bioreactor. Emir J Food Agr. (2012) p.425–433.
[88] S.K. Verma, S. Gantait, B.R. Jeong, S.J. Hwang, Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Sci Rep 8(1) (2018)1–12.
[89] U. Tariq, M. Ali, B.H. Abbasi, Morph-genic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthian L. J. Photochem. Photobiol. B: Biology 130 (2014) 264-271.
[90] S.A. Ahmed, M. Baig, MV, Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi J Biol Sci 21(5) (2014) 499–504.
[91] D. Alvarado-Orea, J Paniagua-Vega, Capataz-Tafur, et al, Photoperiod and elicitors increase steviol glycosides, phenolic, and flavonoid contents in root cultures of Stevia rebaudiana. In Vitro Cell.Dev.Biol.-Plant 56(2020) 298–306 doi.org/10.1007/s11627-019-10041-3.
[92] T. Siatka, J. Chlebekb, A. Hoštálkov, Copper (II) sulfate stimulates scopoletin production in cell suspension cultures of Angelica archangelica. Nat Prod Common. 12(11) (2017)1779–1780.
[93] R Akula, GA Ravishankar, Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6 (11) (2011) 1720–1731.
[94] M. Halder, S. Sarkar, S. Jha, (2019) Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19(12):880–895.
[95] B.Y. -Binder, C.A. Peebles, J.V. Shanks, K.Y. San, The effects of UV‐B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnol. Prog 25(3) (2009) 861–865.
DOI: 10.1002/btpr.97
[96] W. Liu, C. Liu, C. Yang, et al, Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem 122(3) (2010) 475–481.
[97] S. Namlı, Ç. Işıkalan, F. Akbaş, Toker Z, E.A. Tilkat, Effects of UV-B radiation on total phenolic, flavonoid and hypericin contents in Hypericum retusum Aucher grown under in vitro conditions. Nat Prod Res 28(24) (2014) 2286-2292.
[98] M.M. El-Dawayati, S. El-Sharabasy, S. Gantait, Light Intensity-Induced Morphogenetic Response and Enhanced β-Sitosterol Accumulation in Date Palm Phoenix dactylifera L. cv. Hayani) Callus Culture. Sugar Tech (22) (2020) 1122-1129.
[99] Y. Xu, H. Du, B. Huang, Identification of metabolites associated with superior heat tolerance in thermal bent grass through metabolic profiling. Crop Sci., 53(4) (2013) 1626–1635.
[100] A. Ramakrishna, G.A. Ravi Shankar, Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav, 6 (2011) 1720–1731.
[101] B. Gupta, B., Huang Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J Genomics, (2014) 1–18.
[102] M. Al Hassan, A. Pacurar, M.P. Lopez-Gresa, M.P. Donat-Torres, J.V. Llinares, M. Boscaiu, O Vicente (2016) Effects of salt stress on three ecologically distinct Plantago species. Plos One 11(8):.
[103] Iyiola Oluwakemi Oi, Y. Chutha Takahashi, S. Sunisa Enhancing secondary metabolites (emphasis on phenolic and antioxidants) in plants through elicitation and metabolomics Pak. J. Nutr 17, (2019) 4011–420.
[104] F. Wang, Q.L. Ji, Q. Deng, Y.W. Li Effects of different culture conditions on hyperin and isoquercitrin accumulation in callus of Apocynum venetum L. Chinese Traditional Patent Med (2012) 10-16.
[105] P. Gupta, S. Sharma, S. Saxena, Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for steviol glycoside (natural sweetener) production. Appl Biochem Biotechnol, part A: enzyme engineering and biotechnology 172(6) (2014) 2894–2906.
[106] P. Nartop, Ş. Akay, A. Gürel, Effects of Salt Stress and Inoculation Ratios in Cell Cultures of Rubia tinctorum L. SAUJS 21(3) (2017) 328–334.
[107] P. Golkar, M. Taghizadeh, A. Noormohammadi, Effects of sodium alginate elicitation on secondary metabolites and antioxidant activity of safflower genotypes under in vitro salinity stress. In Vitro Cell Dev Biol Plant, 55(5) (2019) 527–538.
[108] S.S. ul Hassan, H. Jin, T. Abu-Izneid, et al, Stress-driven discovery in the natural products: A gateway towards new drugs. Biomed Pharmacother 109(2019)459–467.
[109] H. Mizukami, M. Konoshima, M. Tabata Effect of nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry 16(1977):1183–1186.
[110] Ohlsson AB, Berglund T. (1989) Effect of high MnSO4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness. J Plant Physiol 135(4):505–507.
[111] S. Kartosentono, G. Indrayanto, N.C. Zaini, The uptake of copper ions by cell suspension cultures of Agave amaniensis, and its effect on the growth, amino acids and hecogenin content. PCTOC 68(3) (2002)287–292.
[112] M.N.H. Bhuiyan, T. Adachi, Stimulation of betacyanin synthesis through exogenous methyljasmonate and other elicitors in suspension-cultured cells of Portulaca. J. Plant Physiol 160(2003) 1117–1124.
[113] Z.E. Zayed, M.M. El Dawayati, S.F. El Sharabasy Total steroids production from date palm callus under heavy metals stress. Biosci Res 16(2) (2019) 1448–1457.
[114] M. Kehie, S. Kumaria, P. Tandon (2014) Osmotic stress induced-capsaicin production in suspension cultures of Capsicum chinense Jacq.cv. Naga King Chili. Bioprocess Biosyst Eng 37(6):1055–63.
[115] H.Y. Cui, M.A. Baque, E.J. Lee, et al, Scale-up of adventitious root cultures of Echinacea angustifolia in a pilot-scale bioreactor for the production of biomass and caffeic acid derivatives. Plant Biotechnol Rep 7(3) (2013) 297–308.
[116] Y. Dong, W. Duan, H. He, P. Su, et al, Enhancing taxane biosynthesis in cell suspension culture of Taxus chinensis by overexpressing the neutral/alkaline inverses gene. Process Biochem 50(4) (2015) 651–660.
[117] M.M. El-Dawayati, Z.E. Zayed, S.F. Elsharabasy Effect of conservation on steroids contents of callus explants of date palm cv. sakkoti. Aust J Basic Appl Sci 6(5) (2012) 305–310.
[118] M. S. Bhattacharya, P.K. Khosla, Puri S., Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12(2019)1–12.
[119] G. Pratibha, S. Satyawati, S. Sanjay S, Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem Biotechnol 176(3) (2015)863–874.
[120] A.A. Alzandrin, D.M. Naguib, Effect of hydropriming on Trigonella foenum callus growth, biochemical traits and phytochemical components under PEG treatment. Plant Cell Tiss Organ Cult 141(2020) 179–190. https://doi.org/10.1007/s11240-020-01778-6.
[121] F.G. Malinovsky, J.U. Fangel, W.G. Willats, The role of the cell walls in plant immunity. Front Plant Sci 5(2014) 178. 122]- B.A. Cárdenas-Sandoval, L. Bravo-Luna, K. Bermúdez-Torres, et al, Enhancement of phenylethanoid glycosides biosynthesis in castilleja tenuiflora Benth. Shoot cultures with cell wall oligosaccharides from Fusarium oxysporum f. sp. lycopersici RACE 3. Rev Mex Ing Quim 14(3) (2015) 631–639.
[123] Z. Angelova, S. Georgiev, W. Roos, Elicitation of plants. Biotechnol. Biotechnol. Equip. 20(2) (2006) 72–83.
[124] I. Alami, S. Mari, A, Clérivet, A glycoprotein from Ceratocystis fimbriata f. sp. platani triggers phytoalexin synthesis in Platanus × acerifolia cell-suspension cultures. Photochemistry 48(5) (1998) 771–776.
[125] M. Thakur, S. Bhattacharya, P.K. Khosla, S. Puri Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12(2019)1–12.
[126] S.K. Anisa, S. Ashwini, K. Girish, Isolation and screening of Aspergillus spp. for pectinolytic activity. eJBio 9(2) (2013) 37–41.
[127] S. Satapathy, P.M. Behera, D.K. Tanty et al, Isolation and molecular identification of pectinase producing Aspergillus species from different soil samples of Bhubaneswar regions. Bio Rxiv (2019) p.837112. doi: doi.org/10.1101/837112.
DOI: 10.1101/837112
[128] K. Ramirez-Estrada, H. Vidal-Limon, D. Hidalgo, et al, Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2) (2016) p.182.
[129] M. Shams-Ardakani, S. Hemmati, A. Mohagheghzadeh, Effect of elicitors on the enhancement of podophyllotoxin biosynthesis in suspension cultures of Linum album. Daru J. Pharm. Sci. 13(2) (2005) 56–60.
[130] R. Sahu, M. Gangopadhyay, S. Dewanjee, Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Solenostemon scutellarioides. Acta Physiol Plant 35(5) (2013) 1473–1481.
[131] S. Gantait, J. Panigrahi, In vitro biotechnological advancements in Malabar nut (Adhatoda vasica Nees): Achievements, status and prospects. J Genet Eng Biotechnol 16(2) (2018)545–552.
[132] A.G. Namdeo Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev. 1(1) (2007)69-79.
[133] G.T. Jeong, D.H. Park, H.W. Ryu, et al, Production of antioxidant compounds by culture of Panax ginseng CA Meyer hairy roots. In: Davison B.H., Evans B.R., Finkelstein M., McMillan J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press,2005 p.1147–1157.
[134] S.M. Kang, J.Y. Min, Y.D. Kim, et al, Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J. Biotechnol 139(1) (2009) 84–88.
[135] G. Savita, R. Thimmaraju, N. Bhagyalakshmi, et al Different biotic and abiotic elicitors influence beta lain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem 41(1) (2006) 50–60.
[136] X. Song, H. Wu, Z. Yin, et al, Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22(6) (2017) 837.
[137] F.K. Gao, Y.H. Yong, C.C. Dai Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. J Med Plants Res 5(18) (2011) 4418–4425.
[138] G. Swaroopa, M. Anuradha, T. Pullaiah, Elicitation of forskolin in suspension cultures of Coleus forskohlii (willd.) Briq. Using elicitors of fungal origin. Current Trends in Biotechnology and Pharmacy 7(3) (2013)755–762.
[139] V.D. Mendhulkar, M.M.A., Vakil, Chitosan and Aspergillus niger mediated elicitation of total flavonoids in suspension culture of Andrographis paniculata (Burm. f.) Nees. Sci. Bio. Pharma. J. Int. 4(4) (2013)731–740.
[140] S.A. Ahmed, M.V. Baig, Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi J. Biol. Sci. 21(5) (2014) 499–504.
[141] S.G. Simic, O. Tusevski, S. Maur, et al, Fungal elicitor-mediated enhancement in phenylpropanoid and naphtodianthrone contents of Hypericum perforatum L. cell cultures. PCTOC 122(1) (2015)213–226.
[142] H.N. Badi, V. Abdoosi, N. Farzin. New approach to improve taxol biosynthetic. T.J.S. 2(2015)115–124.
[143] M. Salehi, A. Moieni, Safaie N, et al Elicitors derived from endophytic fungi Chaetomium globosum and Paraconiothyrium brasiliense enhance paclitaxel production in Corylus avellana cell suspension culture. PCTOC 136(1) (2019) 161–171.
[144] M.M.A. Elsoud, E.M. El Kady Current trends in fungal biosynthesis of chitin and chitosan. Bull Natl Res Cent 43(1) (2019)1–12.
[145] J.I. Kadokawa, R. Shimohigoshi, K. Yamashita, et al, Synthesis of chitin and chitosan stereoisomers by thermostable α-glycan phosphorylase-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate. Org Biomol Chem 13(14) (2015) 4336–4343.
DOI: 10.1039/c5ob00167f
[146] Cheng X.Y., Zhou HY, Cui X, et al, Improvement of phenylethanoid glycosides biosynthesis in Cistanche deserticola cell suspension cultures by chitosan elicitor. J. Biotechnology 121(2) (2006) 253–260.
[147] Fan G, Li X, Wang X, et al, Chitosan activates defense responses and triterpenoid production in cell suspension cultures of Betula platyphylla Suk. Afr. J. Biotech. 9 (19) (2010) 2816.
[148] S.T. Li, P. Zhang, M. Zhang, et al, Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. BMC genomics 13(1) (2012) 295.
[149] V. Malayaman, N. Sisubalan, R.P. Senthilkumar, et al, Chitosan mediated enhancement of hydrolysable tannin in Phyllanthus debilis Klein ex Willd via plant cell suspension culture. Int. J Biol. Macromol 104(2017) 1656–1663.
[150] E. Sadeghnezhad, M. Sharifi, H. Zare-Maivan, et al, Time-dependent behavior of phenylpropanoid pathway in response to methyl jasmonate in Scrophularia striata cell cultures. Plant Cell Rep. (2019) 1–17.
[151] M. Onrubia, R.M. Cusidó, K. Ramirez, et al, Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: Paclitaxel and its derivatives. Cur. Med. Chem. 20(7) (2013) 880–891.
[152] J.Y. Oh, Y.J. Kim, M.G. Jang, et al, Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. J Ginseng Res 38(4) (2014) 270–277.
[153] R.K. Tewari, Paek K.Y., Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots. J. Plant Growth Regul 30(4) (2011) 396–404.
[154] T. Kitisripanya, J., Komaikul, N., Tawinkan, et al. Dicentrine production in callus and cell suspension cultures of Stephania venosa. Nat. Prod. Common 8(4) (2013) 443–445.
[155] A. Xu, J.C., Zhan, W.D., Huang Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv, Cabernet Sauvignon. PCTOC 122(1) (2015) 197–211.