Date Palm Industrial Benefits and Secondary Metabolites Production by Biotechnology Approach

Article Preview

Abstract:

Abstract. Date palm (Phoenix dactylifera L.), commonly grown in the hot arid zones predominantly in the Middle East and North Africa, became one of the highly important cultivated palms around the world, because of the multiple processing utilization of the edible fruit, and the various industry- uses of the whole tree parts. Moreover, there are intensive studies indicated the higher nutraceutical value of the essential biological compounds in the date palm tissues like (carotenoids, phenols, lignin, flavonoids, tannins and sterols) and their therapeutic aspects, such as antioxidants (lutein, β-carotene and vitamin A), antibacterial (syringic acid, vanillic acid and gallic acid), antifungal (tannic acid) and anti-cancer (quercetin) and anti-sterility (β-sitosterol and stigmasterol). Meanwhile, the biotechnology approach provides the production possibilities of the plants' secondary metabolites, using cell suspension cultures and the scale-up by bioreactors. Also, using the biotic and abiotic elicitors as important factors inducing bioactive compounds accumulation in plants tissue cultures. This review describes the progress in studying the in vitro production of some important secondary metabolites from the date palm tissues.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-35

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Chao, R.R. Krueger, The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42(5) (2007)1077–1082 doi: doi.org/10.21273/HORTSCI. .42.5.1077.

DOI: 10.21273/hortsci.42.5.1077

Google Scholar

[2] A. El Hadrami, J.M. Al-Khayri, Socioeconomic and traditional importance of date palm. Emir J food Agric 24(5) (2012) 371–385.

Google Scholar

[3] M. Tengberg, Beginnings and early history of date palm garden cultivation in the Middle East. J Arid Environ 86(1) (2012)139–147.

DOI: 10.1016/j.jaridenv.2011.11.022

Google Scholar

[4] S. Gantait, M.M. El-Dawayati, J. Panigrahi, C. Labrooy, S. Kumar Verma, The retrospect and prospect of the applications of biotechnology in (Phoenix dactylifera L.), App.Microbiol. and biotech.102 (19) (2018), 8229-8259.

DOI: 10.1007/s00253-018-9232-x

Google Scholar

[5] D. Johnson., Introduction: date palm biotechnology from theory to practice. In: Jain SM, [6]-Al-Khayri JM, Johnson D (eds) Date palm biotechnology. Springer, Dordrecht (2011) p.1–11.

DOI: 10.1007/978-94-007-1318-5

Google Scholar

[7] S. Jain M., Date palm biotechnology: Current status and prospective-an overview. Emirates J food Agric 24 (5) (2012)386–399.

Google Scholar

[8] R. Al-Alawi, J.H. Al-Mashiqri, J.S.M. Al-Nadabi, et al, Date palm tree (Phoenix dactylifera L.)-Natural products and therapeutic options. Front. Plant Sci. 8 (845) (2017) 1–12.

DOI: 10.3389/fpls.2017.00845

Google Scholar

[9] A. Zaid, P.F. de Wet, Botanical and systematic description of the date palm. In: Zaid A (ed), Date palm cultivation. Rome, Italy: FAO, Plant Production and Protection (2002) p.1–25.

Google Scholar

[10] M.A. Afiq, R.A. Rahman, Y.C. Man, H.A. Al-Kahtani, T.S.T Mansor, Date seed and date seed oil. Int. Food Res. J., 20(5) (2013) p.(2035).

Google Scholar

[11] Z.X. Tang, L.E. Shi, S.M. Aleid, Date fruit: chemical composition, nutritional and medicinal values, products. J Sci Food Agric 93(10) (2013) 2351–2361.

DOI: 10.1002/jsfa.6154

Google Scholar

[12] S. Ghnimi, R. Almansoori, Quality evaluation of coffee-like beverage from date seeds Phoenix dactylifera L, J. Food Proc. Tech. 6 (2015)1–6.

DOI: 10.4172/2157-7110.1000525

Google Scholar

[13] R. Salomón-Torres, B. Valdez-Salas, S. Norzagaray-Plasencia, Date Palm: Source of Foods, Sweets and Beverages. In The Date Palm Genome, 2, 2021 pp.3-26. Springer, Cham.

DOI: 10.1007/978-3-030-73750-4_1

Google Scholar

[14] M., Chandrasekaran, A.H. Bahkali, Valorization of date palm (Phoenix dactylifera L.) fruit processing by-products and wastes using bioprocess technology–Review. Saudi J. Biol. Sci. 20(2) (2013) 105–120.

DOI: 10.1016/j.sjbs.2012.12.004

Google Scholar

[15] M.Q. Al-Mssallem, R.M. Alqurashi, J.M. Al-Khayri, Bioactive compounds of date palm (Phoenix dactylifera L.). In: H. N. Murthy, V. A. Bapat (eds.), Bioactive Compounds in Underutilized Fruits and Nuts, Reference Series in Photochemistry. 2019 p.1–11. Springer Nature, Switzerland, doi.org/10.1007/978-3-030-06120-3_6-1.

DOI: 10.1007/978-3-030-06120-3_6-1

Google Scholar

[16] R.A. Nasser, M.Z.M. Salem, S. Hiziroglu et al, Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production. Energies 9 (2016) 374.

DOI: 10.3390/en9050374

Google Scholar

[17] W., Ghori, N., Saba, M., Jawaid, M., Asim, A review on date palm (phoenix dactylifera) fibers and its polymer composites. In (IOP conference series: materials science and engineering, 368(1) 2018 p.012009). IOP Publishing.

DOI: 10.1088/1757-899x/368/1/012009

Google Scholar

[18] S. Awad, Y. Zhou, E. Katsou, et al. A Critical Review on Date Palm Tree (Phoenix dactylifera L.) Fibres and Their Uses in Bio-composites. Waste Biomass (12) 2021, 2853–2887.

DOI: 10.1007/s12649-020-01105-2

Google Scholar

[19] G. Kabir, B.H Hameed, Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable and Sustainable Energy Reviews, Materials Sci. Forum Vol. 1051 (70) (2017) 945-967.

DOI: 10.1016/j.rser.2016.12.001

Google Scholar

[20] Y. Makkawi, Y. El Sayed, M. Salih, P. Nancarrow, S. Banks, T. Bridgwater, Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renewable energy (143) (2019) 719-730.

DOI: 10.1016/j.renene.2019.05.028

Google Scholar

[21] R.A. Nasser, H.A. Al-Mefarrej, Midribs of date palm as a raw material for wood-cement composite industry in Saudi Arabia. World Appl. Sci.J. 15(12) (2011) 1651–1658.

DOI: 10.17660/actahortic.2010.882.124

Google Scholar

[22] A.R.A. Usman, A. Abduljabbar, M. Vithanage et al, Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis (115) (2015) 392–400 doi.org/10.1016/j.jaap.2015.08.016.

DOI: 10.1016/j.jaap.2015.08.016

Google Scholar

[23] M.A. Al-Farsi, C.Y. Lee, Nutritional and functional properties of dates: A review. Crit. Rev. Food Sci. Nutr. 48(10) (2008) 877–887.

DOI: 10.1080/10408390701724264

Google Scholar

[24] M. Ramchoun, C. Alem, K. Ghafoor, J. Ennassir, Y. F .Zegzouti, Functional composition and antioxidant activities of eight Moroccan date fruit varieties (Phoenix dactylifera L.). J. Saudi Soci.Agr. Sci, 16(3) (2017) 257-264.

DOI: 10.1016/j.jssas.2015.08.005

Google Scholar

[25] A.M. Martín-Sánchez, S. Cherif, J. Ben-Abda, X. Barber-Vallés, J.Á. PérezÁlvarez, [25]-E., Sayas-Barberá, Phytochemicals in date co-products and their antioxidant activity. Food Chem. (158) (2014) 513–520.

DOI: 10.1016/j.foodchem.2014.02.172

Google Scholar

[26] F. Biglari, A.F. Al Karkhi, M. Easa, Antioxidant activity and Phenolic content of various date palm (Phoenix dactylifera L.) fruits from Iran. Food Chem. 107(2007) 1636–1641.

DOI: 10.1016/j.foodchem.2007.10.033

Google Scholar

[27] A. El Hadrami, F. Daayf, I. El Hadrami Secondary metabolites of date palm. In: Jain S, Al-Khayri J, Johnson D (eds) Date palm biotechnology. Springer, Dordrecht p.653–674.

DOI: 10.1007/978-94-007-1318-5

Google Scholar

[28] Daayf F, Lattanzio V (2009) Recent advances in polyphenol research, Wiley Inter Science, New York. Vol 1.

Google Scholar

[29] P.M. Naik, J.M. Al-Khayri, Cell suspension culture as a means to produce polyphenols from date palm (Phoenix dactylifera L.). Ciência e Agrotecnologia 42(5) (2018):464–473.

DOI: 10.1590/1413-70542018425021118

Google Scholar

[30] L.U. Thompson, B.A. Boucher, Z. Liu, et al, Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer 54(2006)184–20.

DOI: 10.1207/s15327914nc5402_5

Google Scholar

[31] E.A. Amira, S.E. Behija, M. Beligh, L. Lamia, I. Manel, H. Mohamed, et al, Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J. Agric. Food Chem. 60(2012) 10896–10902.

DOI: 10.1021/jf302602v

Google Scholar

[32] M. Lemine, F. Mint, M.V.O., Mohamed Ahmed, L. Ben Mohamed Maoulainine, Z. Bouna et al. Antioxidant activity of various Mauritanian date palm (Phoenix dactylifera L.) fruits at two edible ripening stages. Food Sci. Nutr. 2(2014) 700–705.

DOI: 10.1002/fsn3.167

Google Scholar

[33] Y.J. Hong, F.A. Tomas-Barberan, A.A, Kader, A.E. Mitchell, The flavonoid glycosides and procyanidin composition of deglet noor dates (Phoenix dactylifera). J. Agric. Food Chem. 54(2006) 2405–2411doi: 10.1021/jf0581776.

DOI: 10.1021/jf0581776

Google Scholar

[34] I. Hamad, H., Abd Elgawad, S., Al Jaouni et al Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules 20(8) (2015) 13620–13641.

DOI: 10.3390/molecules200813620

Google Scholar

[35] H. Borochov-Neori, S., Judeinstein, A., Greenberg, N. Volkova, M. Rosenblat, M. Aviram Antioxidant and antiatherogenic properties of phenolic acid and flavonol fractions of fruits of Amari and Hallawi date (Phoenix dactylifera L.) varieties. J. Agric. Food Chem. 63(2015) 3189–3195.

DOI: 10.1021/jf506094r

Google Scholar

[36] M., Al-Farsi, C, Alasalvar, A., Morris, et al. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53(2005)7592–7599 53:7592–7599.

DOI: 10.1021/jf050579q

Google Scholar

[37] EB. Saafi, A., El Arem, M. Issaoui, et al, Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia. Int. J. food Sci. Technol. 44(11) (2009)2314–2319.

DOI: 10.1111/j.1365-2621.2009.02075.x

Google Scholar

[38] N, Eid, S, Enani, G, Walton, et al, The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J Nutr Sci 3: (2014). e46.

DOI: 10.1017/jns.2014.16

Google Scholar

[39] D.J. Thanekar, N. Dhodi, Gawali et al, Evaluation of antitumor and anti-angiogenic activity of bioactive compounds fromCinnamomum tamala: In vitro, in vivo and in silico approach South African J. Bot. 104(2016) 6–14.

DOI: 10.1016/j.sajb.2015.09.014

Google Scholar

[40] H. El Abed, M. Chakroun, Z. Abdelkafi-Koubaa, N. Drira, N. Marrakchi, H. Mejdoub, [41]-B. Khemakhem. Antioxidant, anti-inflammatory, and antitumoral effects of aqueous ethanoic extract from Phoenix dactylifera L. parthenocarpic dates. BioMed Res. Int.(2018)  https://doi.org/10.1155/2018/1542602.

DOI: 10.1155/2018/1542602

Google Scholar

[42] R.R. Pujari, N.S. Vyawahare, V.G. Kagathara, Evaluation of antioxidant and neuroprotective effect of date palm (Phoenix dactylifera L.) against bilateral common carotid artery occlusion in rats Indian J. Exp. Biol 49(8) (2011) 627–633.

DOI: 10.1016/s2221-6189(14)60026-3

Google Scholar

[43] M.D. Garba, A. Galadima. Anti-diarrhoea and phytochemical evaluation of (Phoniex dactylifera L.) extracts. Elixir Appl. Chem 49(2012) 9808–9812.

Google Scholar

[44] S. Belmir, K. Boucherit, Z., Boucherit-Otmani, M.H. Belhachemi, Effect of aqueous extract of date palm fruit (Phoenix dactylifera L.) on therapeutic index of amphotericin B. Phytothérapie 14(2016)97–101.

DOI: 10.1007/s10298-015-0961-z

Google Scholar

[45] S.F. El-Sharabasy. Studies on the production of secondary metabolites from date palm by using tissue culture technique. Ph.D. Thesis, Fac Agric, Al-Azhar University, Cairo (2000) p.200.

Google Scholar

[46] A.H.S. Rahman, M. Aly, H. Ali, et al, Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and antitumour activity, Int. J. Clin. Exp.Medc.7(2014) 3483–491.

Google Scholar

[47] N. Zangiabadi, M. Asadi-Shekaari, V. Sheibani, et al, Date fruit extract is a neuroprotective agent in diabetic peripheral neuropathy in streptozotocin-induced diabetic rats: a multimodal analysis. Oxid Med Cell Longev, 2011 p.9.

DOI: 10.1155/2011/976948

Google Scholar

[48] G. Guerrier, R., Berni, J.A. Muñoz-Sanchez, et al. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes (Basel) 9(6) (2018) p.309.

DOI: 10.3390/genes9060309

Google Scholar

[49] R.A. Hussein, A.A. El-Anssary, Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In Herbal Medicine. Intech Open (2018).

DOI: 10.5772/intechopen.76139

Google Scholar

[50] M. Mazid, T.A. Khan, F. Mohammad. Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2) (2011)232–249.

Google Scholar

[51] S.S. ul Hassan, H. Jin, T. Abu-Izneid, et al. Stress-driven discovery in the natural products: A gateway towards new drugs. Biomed Pharmacother 109(2019) 459–467.

DOI: 10.1016/j.biopha.2018.10.173

Google Scholar

[52] S.A. Wilson, S.C. Roberts. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10(3) (2012)249–268.

DOI: 10.1111/j.1467-7652.2011.00664.x

Google Scholar

[53] A.G. Atanasov, B. Waltenberger, E.M. Pferschy-Wenzig, et al, Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 33(8) (2015)1582–1614.

DOI: 10.1016/j.biotechadv.2015.08.001

Google Scholar

[54] S.N., Jimenez-Garcia, M.A., Vazquez-Cruz, R.G., Guevara-Gonzalez, et al. Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes–a review. Polish J Food Nutr Sci 63(2) (2013) 67–78.

DOI: 10.2478/v10222-012-0072-6

Google Scholar

[55] P. Ahmad, M.A. Ahanger, V.P. Singh, et al, Plant metabolites and regulation under environmental stress. Academic Press 1st Edition. (2018) e Book ISBN: 9780128126905.

Google Scholar

[56] S. Manorma, S. Archana, K. Ashwani, et al, Enhancement of secondary metabolites in cultured plant cells through stress stimulus. Am J Plant Physiol 6(2) (2011) 50–71.

Google Scholar

[57] M. Narayani, S. Srivastava. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16(6) (2017)1227–1252.

DOI: 10.1007/s11101-017-9534-0

Google Scholar

[58] I., Smetanska. Production of secondary metabolites using plant cell cultures. In: Food biotech.. Springer, Berlin, Heidelberg(2008) p.187–228.

Google Scholar

[59] P.M., Naik, J.M., Al-Khayri. Impact of abiotic elicitors on in vitro production of plant secondary metabolites: a review. J Adv Res Biotech 1(2) (2016)7. doi: http://dx.doi.org/10.15226/2475-4714/1/2/00102.

DOI: 10.15226/2475-4714/1/2/00102

Google Scholar

[60] M. Ochoa-Villarreal, S. Howat, S. Hong, et al, Plant cell culture strategies for the production of natural products. BMB Rep 49(3) (2016) 149.

DOI: 10.5483/bmbrep.2016.49.3.264

Google Scholar

[61] Kreis W (2019) Exploiting plant cell culture for natural product formation. J Appl Bot FOOD Qual 92:216–225.

Google Scholar

[62] J.C. Cardoso, M.E. Oliveira, F. Cardoso, Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Hortic Bras 37(2) (2019)124–132.

DOI: 10.1590/s0102-053620190201

Google Scholar

[63] N. Khanpour-Ardestani, M., Sharifi, M., Behmanesh. Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: an in vitro approach for acteoside production. Cytotechnology 67(3) (2015)475–485.

DOI: 10.1007/s10616-014-9705-4

Google Scholar

[64] S.F. El Sharabasy. Effect of some Micro-Elements on Steroids Production from Embryogenic Callus of in vitro Date Palm Sakkoty and Bartamuda Cultivars. Materials Research Proceedings, 11. (2019).

DOI: 10.21741/9781644900178-16

Google Scholar

[65] T. Isah, Stress and defense responses in plant secondary metabolites production. Biol. Res. 52(1) (2019) 39.

DOI: 10.1186/s40659-019-0246-3

Google Scholar

[66] C.A. Espinosa-Leal, C.A. Puente-Garza, S. Garcia-Lara. In vitro plant tissue culture: means for production of biological active compounds. Planta 248(1) (2018)1–18.

DOI: 10.1007/s00425-018-2910-1

Google Scholar

[67] A.N. Shinde, N. Malpathak, D.P. Fulzele. Studied enhancement strategies for phytoestrogens production in shake flasks by suspension culture of Psoralea corylifolia. Bioresour. Technol. 100(5) (2009)1833–1839.

DOI: 10.1016/j.biortech.2008.09.028

Google Scholar

[68] S.Z.M.R., Jamil, E.R., Rohani, S.N., Baharum, N.M., Noor. Metabolite profiles of callus and cell suspension cultures of mangosteen. 3 Biotech 8(8) (2018) p.322.

DOI: 10.1007/s13205-018-1336-6

Google Scholar

[69] P.M. Naik, J.M., Al-Khayri. Extraction and estimation of secondary metabolites from date palm cell suspension cultures. In Date Palm Biotechnology Protocols Volume, Humana Press, New York, NY I (2017) p.319–332.

DOI: 10.1007/978-1-4939-7156-5_26

Google Scholar

[70] K. Gokulan, S., Khare, C., Cerniglia. Metabolic Pathways: Production of secondary metabolites of bacteria. In: Batt CA, Tortorello ML (eds.), Encyclopedia of Food Microbiology, vol 2. Elsevier Ltd, Academic Press (2014) p.561–569.

DOI: 10.1016/b978-0-12-384730-0.00203-2

Google Scholar

[71] F.R. Pinu, S.G. Villas-Boas, R., Aggio. Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites 7(4) (2017) 53.

DOI: 10.3390/metabo7040053

Google Scholar

[72] B. Andryukov, V. Mikhailov, N. Besednova, The biotechnological potential of secondary metabolites from marine bacteria. J Mar Sci Eng 7(6) (2019)176.

DOI: 10.20944/preprints201905.0063.v1

Google Scholar

[73] M. Behbahani, M. Shanehsazzadeh, M.J. Hessami, Optimization of callus and cell suspension cultures of Barringtonia racemosa (Lecythidaceae family) for lycopene production. SCI AGR 68(1) (2011) 69–76.

DOI: 10.1590/s0103-90162011000100011

Google Scholar

[74] S.F., El-Sharabasy. Effects of some precursors on development of secondary products in tissues and media of embryogenic callus of date palm cv. Sewi Arab. J Biotechnol 7(1) (2004)83–90.

Google Scholar

[75] H.S. Taha, A.M., Abdel-El Kawy, M.A.E.K. Fathalla, et al. Implement of DMSO for enhancement and production of phenolic and peroxides compounds in suspension cultures of Egyptian date palm (Zaghlool and Samany) cultivars. J Biotech Biochem 1(2010) p.1–10.

Google Scholar

[76] M. Jalil, M.S.M. Annuar, B.C. Tan, et al, Effects of selected physicochemical parameters on zerumbone production of Zingiber zerumbet Smith cell suspension culture. Evid Based Complement Alternat Med (2015) 7 pages, Article ID 757514 doi.org/10.1155/2015/757514.

DOI: 10.1155/2015/757514

Google Scholar

[77] Q. Li, M. Tang, Y. Tan, et al. Improved production of chlorogenic acid from cell suspension cultures of Lonicera macranthoids. Trop J Pharm Res 15(5) (2016) 919-927.

DOI: 10.4314/tjpr.v15i5.4

Google Scholar

[78] A. Valdiani, O.K. Hansen, U.B. Nielsen, et al, Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 39(1) (2019) 20–34.

Google Scholar

[79] M.I. Georgiev, R. Eibl, J.J. Zhong, Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97(9) (2013)3787–3800.

DOI: 10.1007/s00253-013-4817-x

Google Scholar

[80] S. Werner, R.W. Maschke, D. Eibl, R. Eibl, Bioreactor technology for sustainable production of plant cell-derived products. Bioprocessing of Plant In Vitro Systems 2018 p.413–432.

DOI: 10.1007/978-3-319-54600-1_6

Google Scholar

[81] R. Eibl, D. Eibl, Plant cell-based bioprocessing. In Cell and Tissue Reaction Engineering Springer, Berlin, Heidelberg 2009 p.315–356.

DOI: 10.1007/978-3-540-68182-3_8

Google Scholar

[82] G. Sivanandhan, M. Arun, S. Mayavan, et al, Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of with an olides in the adventitious root culture of Withania somnifera (L.) Dunal. Appl. Biochem. Biotechnol 168(3) (2012) 681–696.

DOI: 10.1007/s12010-012-9809-2

Google Scholar

[83] Y. Yang, M. Sha. A. Beginner's, Guide to Bioprocess Modes–Batch, Fed-Batch, and Continuous Fermentatio.n Eppendorf. Application Note (2019) (408).

Google Scholar

[84] L. Palacio, J.J. Cantero, R. Cusido, et al, Phenolic compound production by Larrea divaricata Cav. plant cell cultures and effect of precursor feeding. Process, Biochem 46(1) (2011) 418–422.

DOI: 10.1016/j.procbio.2010.08.029

Google Scholar

[85] S. El-Sharabasy, M. El-Dawayati, Bioreactor steroid production and analysis of date palm embryogenic callus. In Date Palm Biotechnology Protocols, Humana Press, New York, NY Volume I 2017 p.309–318.

DOI: 10.1007/978-1-4939-7156-5_25

Google Scholar

[86] Y-T. Chen, Y-C. Shen, M-C. Chang, et al, Precursor-feeding strategy on the triterpenoid production and anti-inflammatory activity of Antrodia cinnamomea. Process Biochem 51(8) (2016) 941–949.

DOI: 10.1016/j.procbio.2016.05.001

Google Scholar

[87] H.S. Taha, S.A. Bekheet, M.K. El-Bahr, A new concept for production and scaling up of bioactive compounds from Egyptian date palm (Zaghlool) cultivar using bioreactor. Emir J Food Agr. (2012) p.425–433.

Google Scholar

[88] S.K. Verma, S. Gantait, B.R. Jeong, S.J. Hwang, Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Sci Rep 8(1) (2018)1–12.

DOI: 10.1038/s41598-018-36113-9

Google Scholar

[89] U. Tariq, M. Ali, B.H. Abbasi, Morph-genic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthian L. J. Photochem. Photobiol. B: Biology 130 (2014) 264-271.

DOI: 10.1016/j.jphotobiol.2013.11.026

Google Scholar

[90] S.A. Ahmed, M. Baig, MV, Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi J Biol Sci 21(5) (2014) 499–504.

DOI: 10.1016/j.sjbs.2013.12.008

Google Scholar

[91] D. Alvarado-Orea, J Paniagua-Vega, Capataz-Tafur, et al, Photoperiod and elicitors increase steviol glycosides, phenolic, and flavonoid contents in root cultures of Stevia rebaudiana. In Vitro Cell.Dev.Biol.-Plant 56(2020) 298–306 doi.org/10.1007/s11627-019-10041-3.

DOI: 10.1007/s11627-019-10041-3

Google Scholar

[92] T. Siatka, J. Chlebekb, A. Hoštálkov, Copper (II) sulfate stimulates scopoletin production in cell suspension cultures of Angelica archangelica. Nat Prod Common. 12(11) (2017)1779–1780.

DOI: 10.1177/1934578x1701201133

Google Scholar

[93] R Akula, GA Ravishankar, Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6 (11) (2011) 1720–1731.

DOI: 10.4161/psb.6.11.17613

Google Scholar

[94] M. Halder, S. Sarkar, S. Jha, (2019) Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19(12):880–895.

DOI: 10.1002/elsc.201900058

Google Scholar

[95] B.Y. -Binder, C.A. Peebles, J.V. Shanks, K.Y. San, The effects of UV‐B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnol. Prog 25(3) (2009) 861–865.

DOI: 10.1002/btpr.97

Google Scholar

[96] W. Liu, C. Liu, C. Yang, et al, Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem 122(3) (2010) 475–481.

DOI: 10.1016/j.foodchem.2010.03.055

Google Scholar

[97] S. Namlı, Ç. Işıkalan, F. Akbaş, Toker Z, E.A. Tilkat, Effects of UV-B radiation on total phenolic, flavonoid and hypericin contents in Hypericum retusum Aucher grown under in vitro conditions. Nat Prod Res 28(24) (2014) 2286-2292.

DOI: 10.1080/14786419.2014.940588

Google Scholar

[98] M.M. El-Dawayati, S. El-Sharabasy, S. Gantait, Light Intensity-Induced Morphogenetic Response and Enhanced β-Sitosterol Accumulation in Date Palm Phoenix dactylifera L. cv. Hayani) Callus Culture. Sugar Tech (22) (2020) 1122-1129.

DOI: 10.1007/s12355-020-00844-9

Google Scholar

[99] Y. Xu, H. Du, B. Huang, Identification of metabolites associated with superior heat tolerance in thermal bent grass through metabolic profiling. Crop Sci., 53(4) (2013) 1626–1635.

DOI: 10.2135/cropsci2013.01.0045

Google Scholar

[100] A. Ramakrishna, G.A. Ravi Shankar, Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav, 6 (2011) 1720–1731.

Google Scholar

[101] B. Gupta, B., Huang Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J Genomics, (2014) 1–18.

Google Scholar

[102] M. Al Hassan, A. Pacurar, M.P. Lopez-Gresa, M.P. Donat-Torres, J.V. Llinares, M. Boscaiu, O Vicente (2016) Effects of salt stress on three ecologically distinct Plantago species. Plos One 11(8):.

DOI: 10.1371/journal.pone.0160236

Google Scholar

[103] Iyiola Oluwakemi Oi, Y. Chutha Takahashi, S. Sunisa Enhancing secondary metabolites (emphasis on phenolic and antioxidants) in plants through elicitation and metabolomics Pak. J. Nutr 17, (2019) 4011–420.

DOI: 10.3923/pjn.2018.411.420

Google Scholar

[104] F. Wang, Q.L. Ji, Q. Deng, Y.W. Li Effects of different culture conditions on hyperin and isoquercitrin accumulation in callus of Apocynum venetum L. Chinese Traditional Patent Med (2012) 10-16.

Google Scholar

[105] P. Gupta, S. Sharma, S. Saxena, Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for steviol glycoside (natural sweetener) production. Appl Biochem Biotechnol, part A: enzyme engineering and biotechnology 172(6) (2014) 2894–2906.

DOI: 10.1007/s12010-014-0736-2

Google Scholar

[106] P. Nartop, Ş. Akay, A. Gürel, Effects of Salt Stress and Inoculation Ratios in Cell Cultures of Rubia tinctorum L. SAUJS 21(3) (2017) 328–334.

Google Scholar

[107] P. Golkar, M. Taghizadeh, A. Noormohammadi, Effects of sodium alginate elicitation on secondary metabolites and antioxidant activity of safflower genotypes under in vitro salinity stress. In Vitro Cell Dev Biol Plant, 55(5) (2019) 527–538.

DOI: 10.1007/s11627-019-10008-4

Google Scholar

[108] S.S. ul Hassan, H. Jin, T. Abu-Izneid, et al, Stress-driven discovery in the natural products: A gateway towards new drugs. Biomed Pharmacother 109(2019)459–467.

DOI: 10.1016/j.biopha.2018.10.173

Google Scholar

[109] H. Mizukami, M. Konoshima, M. Tabata Effect of nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry 16(1977):1183–1186.

DOI: 10.1016/s0031-9422(00)94356-5

Google Scholar

[110] Ohlsson AB, Berglund T. (1989) Effect of high MnSO4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness. J Plant Physiol 135(4):505–507.

DOI: 10.1016/s0176-1617(89)80112-9

Google Scholar

[111] S. Kartosentono, G. Indrayanto, N.C. Zaini, The uptake of copper ions by cell suspension cultures of Agave amaniensis, and its effect on the growth, amino acids and hecogenin content. PCTOC 68(3) (2002)287–292.

DOI: 10.1023/a:1013920919889

Google Scholar

[112] M.N.H. Bhuiyan, T. Adachi, Stimulation of betacyanin synthesis through exogenous methyljasmonate and other elicitors in suspension-cultured cells of Portulaca. J. Plant Physiol 160(2003) 1117–1124.

DOI: 10.1078/0176-1617-01044

Google Scholar

[113] Z.E. Zayed, M.M. El Dawayati, S.F. El Sharabasy Total steroids production from date palm callus under heavy metals stress. Biosci Res 16(2) (2019) 1448–1457.

Google Scholar

[114] M. Kehie, S. Kumaria, P. Tandon (2014) Osmotic stress induced-capsaicin production in suspension cultures of Capsicum chinense Jacq.cv. Naga King Chili. Bioprocess Biosyst Eng 37(6):1055–63.

DOI: 10.1007/s00449-013-1076-2

Google Scholar

[115] H.Y. Cui, M.A. Baque, E.J. Lee, et al, Scale-up of adventitious root cultures of Echinacea angustifolia in a pilot-scale bioreactor for the production of biomass and caffeic acid derivatives. Plant Biotechnol Rep 7(3) (2013) 297–308.

DOI: 10.1007/s11816-012-0263-y

Google Scholar

[116] Y. Dong, W. Duan, H. He, P. Su, et al, Enhancing taxane biosynthesis in cell suspension culture of Taxus chinensis by overexpressing the neutral/alkaline inverses gene. Process Biochem 50(4) (2015) 651–660.

DOI: 10.1016/j.procbio.2015.01.018

Google Scholar

[117] M.M. El-Dawayati, Z.E. Zayed, S.F. Elsharabasy Effect of conservation on steroids contents of callus explants of date palm cv. sakkoti. Aust J Basic Appl Sci 6(5) (2012) 305–310.

Google Scholar

[118] M. S. Bhattacharya, P.K. Khosla, Puri S., Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12(2019)1–12.

DOI: 10.1016/j.jarmap.2018.11.004

Google Scholar

[119] G. Pratibha, S. Satyawati, S. Sanjay S, Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem Biotechnol 176(3) (2015)863–874.

DOI: 10.1007/s12010-015-1616-0

Google Scholar

[120] A.A. Alzandrin, D.M. Naguib, Effect of hydropriming on Trigonella foenum callus growth, biochemical traits and phytochemical components under PEG treatment. Plant Cell Tiss Organ Cult 141(2020) 179–190. https://doi.org/10.1007/s11240-020-01778-6.

DOI: 10.1007/s11240-020-01778-6

Google Scholar

[121] F.G. Malinovsky, J.U. Fangel, W.G. Willats, The role of the cell walls in plant immunity. Front Plant Sci 5(2014) 178. 122]- B.A. Cárdenas-Sandoval, L. Bravo-Luna, K. Bermúdez-Torres, et al, Enhancement of phenylethanoid glycosides biosynthesis in castilleja tenuiflora Benth. Shoot cultures with cell wall oligosaccharides from Fusarium oxysporum f. sp. lycopersici RACE 3. Rev Mex Ing Quim 14(3) (2015) 631–639.

DOI: 10.3389/fpls.2014.00178

Google Scholar

[123] Z. Angelova, S. Georgiev, W. Roos, Elicitation of plants. Biotechnol. Biotechnol. Equip. 20(2) (2006) 72–83.

Google Scholar

[124] I. Alami, S. Mari, A, Clérivet, A glycoprotein from Ceratocystis fimbriata f. sp. platani triggers phytoalexin synthesis in Platanus × acerifolia cell-suspension cultures. Photochemistry 48(5) (1998) 771–776.

DOI: 10.1016/s0031-9422(97)00892-3

Google Scholar

[125] M. Thakur, S. Bhattacharya, P.K. Khosla, S. Puri Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12(2019)1–12.

DOI: 10.1016/j.jarmap.2018.11.004

Google Scholar

[126] S.K. Anisa, S. Ashwini, K. Girish, Isolation and screening of Aspergillus spp. for pectinolytic activity. eJBio 9(2) (2013) 37–41.

Google Scholar

[127] S. Satapathy, P.M. Behera, D.K. Tanty et al, Isolation and molecular identification of pectinase producing Aspergillus species from different soil samples of Bhubaneswar regions. Bio Rxiv (2019) p.837112. doi: doi.org/10.1101/837112.

DOI: 10.1101/837112

Google Scholar

[128] K. Ramirez-Estrada, H. Vidal-Limon, D. Hidalgo, et al, Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2) (2016) p.182.

DOI: 10.3390/molecules21020182

Google Scholar

[129] M. Shams-Ardakani, S. Hemmati, A. Mohagheghzadeh, Effect of elicitors on the enhancement of podophyllotoxin biosynthesis in suspension cultures of Linum album. Daru J. Pharm. Sci. 13(2) (2005) 56–60.

Google Scholar

[130] R. Sahu, M. Gangopadhyay, S. Dewanjee, Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Solenostemon scutellarioides. Acta Physiol Plant 35(5) (2013) 1473–1481.

DOI: 10.1007/s11738-012-1188-3

Google Scholar

[131] S. Gantait, J. Panigrahi, In vitro biotechnological advancements in Malabar nut (Adhatoda vasica Nees): Achievements, status and prospects. J Genet Eng Biotechnol 16(2) (2018)545–552.

DOI: 10.1016/j.jgeb.2018.03.007

Google Scholar

[132] A.G. Namdeo Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev. 1(1) (2007)69-79.

Google Scholar

[133] G.T. Jeong, D.H. Park, H.W. Ryu, et al, Production of antioxidant compounds by culture of Panax ginseng CA Meyer hairy roots. In: Davison B.H., Evans B.R., Finkelstein M., McMillan J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press,2005 p.1147–1157.

DOI: 10.1007/978-1-59259-991-2_96

Google Scholar

[134] S.M. Kang, J.Y. Min, Y.D. Kim, et al, Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J. Biotechnol 139(1) (2009) 84–88.

DOI: 10.1016/j.jbiotec.2008.09.007

Google Scholar

[135] G. Savita, R. Thimmaraju, N. Bhagyalakshmi, et al Different biotic and abiotic elicitors influence beta lain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem 41(1) (2006) 50–60.

DOI: 10.1016/j.procbio.2005.03.071

Google Scholar

[136] X. Song, H. Wu, Z. Yin, et al, Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22(6) (2017) 837.

DOI: 10.3390/molecules22060837

Google Scholar

[137] F.K. Gao, Y.H. Yong, C.C. Dai Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. J Med Plants Res 5(18) (2011) 4418–4425.

Google Scholar

[138] G. Swaroopa, M. Anuradha, T. Pullaiah, Elicitation of forskolin in suspension cultures of Coleus forskohlii (willd.) Briq. Using elicitors of fungal origin. Current Trends in Biotechnology and Pharmacy 7(3) (2013)755–762.

DOI: 10.1007/978-981-19-6521-0_4

Google Scholar

[139] V.D. Mendhulkar, M.M.A., Vakil, Chitosan and Aspergillus niger mediated elicitation of total flavonoids in suspension culture of Andrographis paniculata (Burm. f.) Nees. Sci. Bio. Pharma. J. Int. 4(4) (2013)731–740.

DOI: 10.1186/1999-3110-54-49

Google Scholar

[140] S.A. Ahmed, M.V. Baig, Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi J. Biol. Sci. 21(5) (2014) 499–504.

DOI: 10.1016/j.sjbs.2013.12.008

Google Scholar

[141] S.G. Simic, O. Tusevski, S. Maur, et al, Fungal elicitor-mediated enhancement in phenylpropanoid and naphtodianthrone contents of Hypericum perforatum L. cell cultures. PCTOC 122(1) (2015)213–226.

DOI: 10.1007/s11240-015-0762-y

Google Scholar

[142] H.N. Badi, V. Abdoosi, N. Farzin. New approach to improve taxol biosynthetic. T.J.S. 2(2015)115–124.

DOI: 10.15547/tjs.2015.02.002

Google Scholar

[143] M. Salehi, A. Moieni, Safaie N, et al Elicitors derived from endophytic fungi Chaetomium globosum and Paraconiothyrium brasiliense enhance paclitaxel production in Corylus avellana cell suspension culture. PCTOC 136(1) (2019) 161–171.

DOI: 10.1007/s11240-018-1503-9

Google Scholar

[144] M.M.A. Elsoud, E.M. El Kady Current trends in fungal biosynthesis of chitin and chitosan. Bull Natl Res Cent 43(1) (2019)1–12.

DOI: 10.1186/s42269-019-0105-y

Google Scholar

[145] J.I. Kadokawa, R. Shimohigoshi, K. Yamashita, et al, Synthesis of chitin and chitosan stereoisomers by thermostable α-glycan phosphorylase-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate. Org Biomol Chem 13(14) (2015) 4336–4343.

DOI: 10.1039/c5ob00167f

Google Scholar

[146] Cheng X.Y., Zhou HY, Cui X, et al, Improvement of phenylethanoid glycosides biosynthesis in Cistanche deserticola cell suspension cultures by chitosan elicitor. J. Biotechnology 121(2) (2006) 253–260.

DOI: 10.1016/j.jbiotec.2005.07.012

Google Scholar

[147] Fan G, Li X, Wang X, et al, Chitosan activates defense responses and triterpenoid production in cell suspension cultures of Betula platyphylla Suk. Afr. J. Biotech. 9 (19) (2010) 2816.

Google Scholar

[148] S.T. Li, P. Zhang, M. Zhang, et al, Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. BMC genomics 13(1) (2012) 295.

DOI: 10.1186/1471-2164-13-295

Google Scholar

[149] V. Malayaman, N. Sisubalan, R.P. Senthilkumar, et al, Chitosan mediated enhancement of hydrolysable tannin in Phyllanthus debilis Klein ex Willd via plant cell suspension culture. Int. J Biol. Macromol 104(2017) 1656–1663.

DOI: 10.1016/j.ijbiomac.2017.03.138

Google Scholar

[150] E. Sadeghnezhad, M. Sharifi, H. Zare-Maivan, et al, Time-dependent behavior of phenylpropanoid pathway in response to methyl jasmonate in Scrophularia striata cell cultures. Plant Cell Rep. (2019) 1–17.

DOI: 10.1007/s00299-019-02486-y

Google Scholar

[151] M. Onrubia, R.M. Cusidó, K. Ramirez, et al, Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: Paclitaxel and its derivatives. Cur. Med. Chem. 20(7) (2013) 880–891.

DOI: 10.2174/0929867311320070004

Google Scholar

[152] J.Y. Oh, Y.J. Kim, M.G. Jang, et al, Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. J Ginseng Res 38(4) (2014) 270–277.

DOI: 10.1016/j.jgr.2014.04.004

Google Scholar

[153] R.K. Tewari, Paek K.Y., Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots. J. Plant Growth Regul 30(4) (2011) 396–404.

DOI: 10.1007/s00344-011-9202-3

Google Scholar

[154] T. Kitisripanya, J., Komaikul, N., Tawinkan, et al. Dicentrine production in callus and cell suspension cultures of Stephania venosa. Nat. Prod. Common 8(4) (2013) 443–445.

DOI: 10.1177/1934578x1300800408

Google Scholar

[155] A. Xu, J.C., Zhan, W.D., Huang Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv, Cabernet Sauvignon. PCTOC 122(1) (2015) 197–211.

DOI: 10.1007/s11240-015-0761-z

Google Scholar