Single Fiber Test Behavior of Lignocellulose Sugar Palm Fibers: Effect of Treatments

Article Preview

Abstract:

This paper evaluates the influence of two types of treatments on the tensile related properties of sugar palm fiber (SPF) by using a single fiber test. Natural fibers are one of the vital reinforcing materials in polymer composites due to their positive properties. Sugar palm fiber is a kind of lignocellulose fiber that can be a good potential filler material in fibers/polymer composites for many uses. A Scanning electronic microscope was used to evaluate morphological analyses. Seawater and alkaline solution treatments were used to treat the fiber before the test. The properties of sugar palm fibers improved significantly, as the effect of alkaline concentration by 0.5% and 0.25% improved the tensile properties of a single fiber by 10% and 176%, respectively compared to the untreated fiber. On the other hand, the highest effect on sugar palm fibers was the fibers treated by seawater for 30 days by 273%. Morphologic analyses showed that the treatment plays a big role to clean the surface of the fibers and remove the undesirable impurities. Overall, the results depict that the treatments improve the tensile properties of the single SPF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-46

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. M. Shahroze, M. Chandrasekar, K. Senthilkumar, T. Senthilmuthukumar, M. R. Ishak, and M. R. M. Asyraf, A review on the various fibre treatment techniques used for the fibre surface modification of the sugar palm fibres,, Semin. Enau Kebangs., (2019).

Google Scholar

[2] A. M. N. Maisara, R. A. Ilyas, S. M. Sapuan, M. R. M. Huzaifah, N. Mohd Nurazzi, and S. O. A. Saifulazry, Effect of fibre length and sea water treatment on mechanical properties of sugar palm fibre reinforced unsaturated polyester composites,, Int. J. Recent Technol. Eng., (2019).

DOI: 10.35940/ijrte.b1100.0782s419

Google Scholar

[3] N. Razali, M. S. Salit, M. Jawaid, M. R. Ishak, and Y. Lazim, A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity,, Bioresources, vol. 10, no. 1, p.1803–1823, (2015).

DOI: 10.15376/biores.10.1.1803-1824

Google Scholar

[4] M. R. M. Huzaifah, S. M. Sapuan, Z. Leman, and M. R. Ishakc, Comparative study of physical, mechanical, and thermal properties on sugar palm fiber (Arenga pinnata (Wurmb) Merr.) reinforced vinyl ester composites obtained from different geographical locations,, BioResources, (2019).

DOI: 10.15376/biores.14.1.619-637

Google Scholar

[5] A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, Physical properties of silane-treated sugar palm fiber reinforced thermoplastic polyurethane composites,, IOP Conf. Ser. Mater. Sci. Eng., vol. 368, no. 1, (2018).

DOI: 10.1088/1757-899x/368/1/012047

Google Scholar

[6] S. Mohd Izwan, S. M. Sapuan, M. Y. M. Zuhri, and A. R. Mohamed, Effects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological Properties,, J. Mater. Res. Technol., Apr. (2020).

DOI: 10.1016/j.jmrt.2020.03.105

Google Scholar

[7] D. Bachtiar, S. M. Sapuan, E. S. Zainudin, A. Khalina, and K. Z. M. Dahlan, The tensile properties of single sugar palm ( Arenga pinnata ) fibre,, IOP Conf. Ser. Mater. Sci. Eng., vol. 11, no. 1, p.012012, (2010).

DOI: 10.1088/1757-899x/11/1/012012

Google Scholar

[8] M. R. Ishak, Z. Leman, S. M. Sapuan, M. Z. A. Rahman, and U. M. K. Anwar, Effects of impregnation pressure on physical and tensile properties of impregnated sugar palm (Arenga pinnata) fibres,, (2011).

DOI: 10.4028/www.scientific.net/kem.471-472.1153

Google Scholar

[9] H. Y. Sastra, J. P. Siregar, S. M. Sapuan, and M. M. Hamdan, Tensile properties of Arenga pinnata fiber-reinforced epoxy composites,, Polym. - Plast. Technol. Eng., (2006).

DOI: 10.1080/03602550500374038

Google Scholar

[10] D. Bachtiar, S. M. Sapuan, and M. M. Hamdan, The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites,, Mater. Des., vol. 29, no. 7, p.1285–1290, (2008).

DOI: 10.1016/j.matdes.2007.09.006

Google Scholar

[11] B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment,, cellulose, vol. 23, no. 5, p.2905–2916, (2016).

DOI: 10.1007/s10570-016-1005-z

Google Scholar

[12] Z. Leman, S. M. Sapuan, M. Azwan, M. M. H. M. Ahmad, and M. a. Maleque, The Effect of Environmental Treatments on Fiber Surface Properties and Tensile Strength of Sugar Palm Fiber-Reinforced Epoxy Composites,, Polym. Plast. Technol. Eng., vol. 47, no. 6, p.606–612, (2008).

DOI: 10.1080/03602550802059451

Google Scholar

[13] H. Mardin, I. N. G. Wardana, W. Suprapto, and K. Kamil, Effect of Sugar Palm Fiber Surface on Interfacial Bonding with Natural Sago Matrix,, vol. 2016, (2016).

DOI: 10.1155/2016/9240416

Google Scholar

[14] J. B. Hurst, W. S. Hong, M. L. Gambone, and J. R. Porter, ASTM single fiber room temperature test standard development,, (1998).

DOI: 10.1115/98-gt-567

Google Scholar

[15] M. R. Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, Influence of Treatments on the Mechanical and Thermal Properties of Sugar Palm Fibre Reinforced Phenolic Composites,, Bioresources, vol. 12, no. 1, p.1447–1462, (2017).

DOI: 10.15376/biores.12.1.1447-1462

Google Scholar

[16] S. Misri, Z. Leman, S. M. Sapuan, and M. R. Ishak, Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite,, IOP Conf. Ser. Mater. Sci. Eng., (2010).

DOI: 10.1088/1757-899x/11/1/012015

Google Scholar

[17] Z. Leman, S. M. Sapuan, a. M. Saifol, M. a. Maleque, and M. M. H. M. Ahmad, Moisture absorption behavior of sugar palm fiber reinforced epoxy composites,, Mater. Des., vol. 29, p.1666–1670, (2008).

DOI: 10.1016/j.matdes.2007.11.004

Google Scholar

[18] J. Sahari, S. M. Sapuan, Z. N. Ismarrubie, and M. Z. A. Rahman, Comparative study of physical properties based on different parts of sugar palm fibre reinforced unsaturated polyester composites,, (2011).

DOI: 10.4028/www.scientific.net/kem.471-472.455

Google Scholar