[1]
H. Tschätsch, Metal forming practise: Processes, machines, tools, Springer, Berlin u.a., (2006).
Google Scholar
[2]
N. Bay, A. Azushima, P. Groche, I. Ishibashi, M. Merklein, M. Morishita, T. Nakamura, S. Schmid, M. Yoshida, Environmentally benign tribo-systems for metal forming, CIRP annals 59 (2010) 760–780.
DOI: 10.1016/j.cirp.2010.05.007
Google Scholar
[3]
P. Groche, M. Christiany, Y. Wu, Load-dependent wear in sheet metal forming, Wear 422 (2019) 252–260.
DOI: 10.1016/j.wear.2019.01.071
Google Scholar
[4]
G. Stachowiak, A.W. Batchelor, Engineering tribology, Butterworth-Heinemann, (2013).
Google Scholar
[5]
J.F. Archard, Contact and rubbing of flat surfaces, Journal of applied physics 24 (1953) 981–988.
DOI: 10.1063/1.1721448
Google Scholar
[6]
E. Rabinowicz, La Dunn, P.G. Russell, A study of abrasive wear under three-body conditions, Wear 4 (1961) 345–355.
DOI: 10.1016/0043-1648(61)90002-3
Google Scholar
[7]
R.J. Bayer, Mechanical Wear Fundamentals and Testing, revised and expanded, CRC Press, (2004).
Google Scholar
[8]
S.C. Lim, M.F. Ashby, Overview no. 55 wear-mechanism maps, Acta metallurgica 35 (1987) 1–24.
DOI: 10.1016/0001-6160(87)90209-4
Google Scholar
[9]
Y. Wu, P. Groche, Influence of Tool Finishing on the Wear Development in Strip Drawing Tests with High Strength Steels, Tribology Online 15 (2020) 170–180.
DOI: 10.2474/trol.15.170
Google Scholar
[10]
Y. Wu, V. Recklin, P. Groche, Strain Induced Surface Change in Sheet Metal Forming: Numerical Prediction, Influence on Friction and Tool Wear, Journal of Manufacturing and Materials Processing 5 (2021) 29.
DOI: 10.3390/jmmp5020029
Google Scholar
[11]
M. Christiany, Methode zur Analyse des Verschleißverhaltens in der Blechumformung, Shaker Verlag, (2016).
Google Scholar
[12]
P. Groche, M. Christiany, Evaluation of the potential of tool materials for the cold forming of advanced high strength steels, Wear 302 (2013) 1279–1285.
DOI: 10.1016/j.wear.2013.01.001
Google Scholar
[13]
A. Wöhler, Tests to determine the forces acting on railway carriage axles and the capacity of resistance of the axles, Engineering 11 (1871) 1858–1870.
Google Scholar
[14]
I. Burhan, H.S. Kim, S-N Curve Models for Composite Materials Characterisation: An Evaluative Review, Journal of Composites Science (2018).
Google Scholar
[15]
O.H. Basquin, The exponential law of endurance tests, in: Proc Am Soc Test Mater, p.625–630.
Google Scholar
[16]
W. Weibull, The statistical aspect of fatigue failures and its consequences, Fatigue and fracture of metals 4 (1952) 182–196.
Google Scholar
[17]
D.L. Henry, A theory of fatigue damage accumulation in steel, Ohio State University, (1953).
Google Scholar
[18]
C. E. Stromeyer, The determination of fatigue limits under alternating stress conditions, Proc. R. Soc. Lond. A 90 (1914) 411–425. https://doi.org/10.1098/rspa.1914.0066.
DOI: 10.1098/rspa.1914.0066
Google Scholar
[19]
W. Hwang, K.S. Han, Fatigue of Composites—Fatigue Modulus Concept and Life Prediction, Journal of Composite Materials 20 (1986) 154–165. https://doi.org/10.1177/002199838602000203.
DOI: 10.1177/002199838602000203
Google Scholar
[20]
G.P. Sendeckyj, Fitting models to composite materials fatigue data, in: Test methods and design allowables for fibrous composites, ASTM International, (1981).
DOI: 10.1520/stp29314s
Google Scholar
[21]
A. Poursartip, P.W.R. Beaumont, The fatigue damage mechanics of a carbon fibre composite laminate: II—life prediction, Composites Science and Technology 25 (1986) 283–299. https://doi.org/10.1016/0266-3538(86)90045-X.
DOI: 10.1016/0266-3538(86)90045-x
Google Scholar
[22]
J. Kohout, S. Veˇchet, A new function for fatigue curves characterization and its multiple merits, International Journal of Fatigue 23 (2001) 175–183. https://doi.org/10.1016/S0142-1123(00)00082-7.
DOI: 10.1016/s0142-1123(00)00082-7
Google Scholar
[23]
H.S. Kim, J. Zhang, Fatigue Damage and Life Prediction of Glass/Vinyl Ester Composites, Journal of Reinforced Plastics and Composites 20 (2001) 834–848. https://doi.org/10.1177/15307964-01020010-03.
DOI: 10.1177/15307964-01020010-03
Google Scholar
[24]
A. D'Amore, G. Caprino, P. Stupak, J. Zhou, L. Nicolais, Effect of Stress Ratio on the Flexural Fatigue Behaviour of Continuous Strand Mat Reinforced Plastics, Science and Engineering of Composite Materials 5 (1996) 1–8. https://doi.org/10.1515/SECM.1996.5.1.1.
DOI: 10.1515/secm.1996.5.1.1
Google Scholar
[25]
F.P. Beer, E.R. Johnston, Mechanics of materials, McGraw-Hill, New York, (1992).
Google Scholar
[26]
C. Bathias, There is no infinite fatigue life in metallic materials, Fatigue & fracture of engineering materials & structures (Print) 22 (1999) 559–565.
DOI: 10.1046/j.1460-2695.1999.00183.x
Google Scholar
[27]
I.J. Myung, Tutorial on maximum likelihood estimation, Journal of mathematical Psychology 47 (2003) 90–100.
DOI: 10.1016/s0022-2496(02)00028-7
Google Scholar
[28]
L.-L. Xu, Unary linear regression method on principal component analysis, Bio Technology Volume 10 Issue 2 (2014).
Google Scholar
[29]
W.S. DeSarbo, W.L. Cron, A maximum likelihood methodology for clusterwise linear regression, Journal of classification 5 (1988) 249–282.
DOI: 10.1007/bf01897167
Google Scholar
[30]
S. Weisberg, Applied linear regression, Fourth edition, Wiley, Hoboken, NJ, (2014).
Google Scholar
[31]
P. Groche, Y. Wu, Inline observation of tool wear in deep drawing with thermoelectric and optical measurements, CIRP annals 68 (2019) 567–570.
DOI: 10.1016/j.cirp.2019.04.034
Google Scholar
[32]
M. Moghadam, P. Christiansen, N. Bay, Detection of the Onset of Galling in Strip Reduction Testing Using Acoustic Emission, Procedia Engineering 183 (2017) 59–64. https://doi.org/10.1016/j.proeng.2017.04.011.
DOI: 10.1016/j.proeng.2017.04.011
Google Scholar
[33]
E.-M. Miao, Y.-Y. Gong, P.-C. Niu, C.-Z. Ji, H.-D. Chen, Robustness of thermal error compensation modeling models of CNC machine tools, The International Journal of Advanced Manufacturing Technology 69 (2013) 2593–2603. https://doi.org/10.1007/s00170-013-5229-x.
DOI: 10.1007/s00170-013-5229-x
Google Scholar
[34]
A. Shahzad, Investigation into fatigue strength of natural/synthetic fiber-based composite materials, in: Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Elsevier, 2019, p.215–239.
DOI: 10.1016/b978-0-08-102292-4.00012-6
Google Scholar
[35]
K.H. Habig, Verschleiß und Härte von Werkstoffen, Hanser Verl, München, (1980).
Google Scholar
[36]
C. Bathias, A. Pineau, Fatigue of materials and structures: fundamentals, John Wiley & Sons, (2013).
Google Scholar
[37]
K.L. Reifsnider, Fatigue of composite materials, Elsevier, (2012).
Google Scholar