[1]
C. Grant, Automated processes for composite aircraft structure, Industrial Robot: An International Journal, Vol. 33, Issue: 2, pp.117-121 (2006) https://doi.org/10.1108/01439910610651428.
DOI: 10.1108/01439910610651428
Google Scholar
[2]
T. Rudberg, J. Nielson, M. Henscheid, J. Cemenska, Improving AFP Cell Performance, SAE Int. J. Aerosp. 7(2) (2014),.
DOI: 10.4271/2014-01-2272
Google Scholar
[3]
M. Szcesny, F. Heieck, S. Carosella, P. Middendorf, H. Sehrschön, M. Schneiderbauer, The advanced ply placement process – an innovative direct 3D placement technology for plies and tapes, Advanced Manufacturing: Polymer & Composites Science, 3, pp.2-9 (2017),.
DOI: 10.1080/20550340.2017.1291398
Google Scholar
[4]
D. Lukaszewicz, C. Ward, K.D. Potter, The engineering aspects of automated prepreg layup: History, present and future, Composites: Part B, 43, pp.997-1009 (2012), DOI: https://doi.org/10.1016/j.compositesb.2011.12.003.
DOI: 10.1016/j.compositesb.2011.12.003
Google Scholar
[5]
T. Zenker, M. Gnaedinger, Consolidation Behavior of Fiber Steered Thermoplastic Automated Fiber Placement Preforms, Proceeding of International Conference and Exhibition on Thermoplastic Composites 2020. (2020).
Google Scholar
[6]
O. Rimmel, Grundlagen der Imprägnierung von Dry Fiber Placement Preforms, Dissertation, Institut für Verbundwerkstoffe GmbH (2020), ISBN: 978-3-944440-37-8.
Google Scholar
[7]
Information on https://www.compositesworld.com/articles/dry-fiber-placement-surpassing-limits, Last visited on: 06.12.(2021).
Google Scholar
[8]
F. Helber, M. Szcesny, S. Carosella, P. Middendorf, Tack and Binder Solubility Investigations on Reactive and Non-Reactive Binder Systems, SAMPE Europe Conference 2019, Nantes. (2019).
Google Scholar
[9]
S. Schmidt, T. Mahrholz, A. Kühn and P. Wierach, Powder binders used for the manufacturing of wind turbine rotor blades. Part 1. Characterization of resin-binder interaction and preform properties, Polymer Composites, Vol. 39, No. 3, pp.708-717 (2018), DOI: https://doi.org/10.1002/pc.23988.
DOI: 10.1002/pc.23988
Google Scholar
[10]
Geßler, Andreas, Textile Integrationstechniken zur Herstellung vorkonfektionierter Verstärkungsstrukturen für FVK INTEX,, Final Report 2002; https://edocs.tib.eu/files/e01fb02/361430388.pdf; Last visited on: 06.12.(2021).
Google Scholar
[11]
U. Beier, High-performance fibre-reinforced composites prepared by a novel preform manufacturing routine, Dissertation, 2020, ISBN: 978-3-941492-20-2.
Google Scholar
[12]
K. Henning, Wirtschaftliche Herstellung von Faserverbundbauteilen mit Hilfe automatisiert hergestellter textiler Preforms, Dissertation, Shaker, 2008, ISBN: 9783832271336.
Google Scholar
[13]
J. Schulz, E. Kühne, B. Wielage, Einsatz der Preformtechniken zur Produktivitätssteigerung bei der Verarbeitung von Faserverbundkunststoffen, 17. Symposium Verbundwerkstoffe und Werkstoffverbunde, 2009, DOI: https://doi.org/10.1002/9783527627110.ch54.
DOI: 10.1002/9783527627110.ch54
Google Scholar
[14]
C.-H. Shih, J. Lee, Tackification of Textile Fiber Preforms in Resin Transfer Molding, Journal of Composite Materials, 35 (21), pp.1954-1981, 2001, DOI: https://doi.org/10.1177/002199801772661452.
DOI: 10.1177/002199801772661452
Google Scholar
[15]
R.W. Hillermeier, J.C. Seferis, Interlayer toughening of resin transfer molding composites, Composites Part A: Applied Science and Manufacturing, , Volume 32, Issue 5, pp.721-729, 2001, DOI: https://doi.org/10.1016/S1359-835X(00)00088-9.
DOI: 10.1016/s1359-835x(00)00088-9
Google Scholar
[16]
J. Brody, J. Gillespie, Reactive and Non-reactive Binders in Glass/Vinyl Ester Composites, Polymer Composites, Vol. 26, No. 3, pp.377-387, (2005).
DOI: 10.1002/pc.20068
Google Scholar
[17]
M. Tanoğlu, S.A. Tuğrul, Investigating the effects of a polyester preforming binder on the mechanical and ballistic performance of E-glass fiber reinforced polyester composites, International Journal of Adhesion and Adhesives, Volume 23, Issue 1, Pages 1-8, 2003, DOI: https://doi.org/10.1016/S0143-7496(02)00061-1.
DOI: 10.1016/s0143-7496(02)00061-1
Google Scholar
[18]
M. Bulat, F. Heieck, Binder Application Methods for textile Preforming Processes, LTH Faserverbund-Leichtbau, 2014, FL 21 200-02, Issue A.
Google Scholar
[19]
B. Grisin, S. Carosella, P. Middendorf, Dry Fibre Placement: The Influence of Process Parameters on Mechanical Laminate Properties and Infusion Behaviour, Polymers 2021, Vol. 13 (21), DOI: https://doi.org/10.3390/polym13213853, (2021).
DOI: 10.3390/polym13213853
Google Scholar
[20]
L. Veldenz, M. Di Francesco, P. Giddings, B.C. Kim & K. Potter, Material selection for automated dry fiber placement using the analytical hierarchy process, Advanced Manufacturing: Polymer & Composites Science, 2019,.
DOI: 10.1080/20550340.2018.1545377
Google Scholar
[21]
Information on https://www.compositesworld.com/articles/airborne-siemens-and-sabic-partner-to-mass-produce-thermoplastic-composites; Last visited on: 06.12.(2021).
Google Scholar
[22]
Information on https://www.mtorres.es/en/aeronautics/products/carbon-fiber/torresfiberlayup, Last visited on: 06.12.(2021).
Google Scholar
[23]
Information on https://www.ifb.uni-stuttgart.de/forschung/fertigungstechnologie/app/, Last visited on: 06.12.(2021).
Google Scholar
[24]
R&G Faserverbundwerkstoffe GmbH, Waldenbuch, Germany, Safety Data Sheet, (2021).
Google Scholar
[25]
T. Meinhardt, I. Harismendy, F. Heieck, LOWFLIP – Tailored Snap-Cure Prepregs for novel Composite Production Processes, Proceedings of the 17th European Conference on Composite Materials 2016, Munich, Germany, June 26th – 30th, (2016).
Google Scholar
[26]
SGL TECHNOLOGIES GmbH, Meitingen, Germany, Product Data Sheet, C U600-0/SD-E501/33%, (2021).
Google Scholar
[27]
K. Heudorfer, M. Engelfried, J. Fial, S. Carosella, P. Middendorf, Characterisation of the Forming properties of wide unidirectional prepreg tapes using the advanced ply placement (APP) process, 8th EASN – CEAS International Conference on Manufacturing for Growth & Innovation.
Google Scholar
[28]
HEXION Stuttgart GmbH, Esslingen, Germany, Technical Data Sheet EPIKOTETM Resin 05311, (2006).
Google Scholar
[29]
HEXION Stuttgart GmbH, Esslingen, Germany, Technical Data Sheet EPIKOTETM Resin 05390, (2006).
Google Scholar
[30]
Huntsman Advanced Materials (Switzerland) GmbH, Basel, Switzerland, Technical Data Sheet raldite® LT 3366, (2011).
Google Scholar
[31]
SAERTEX GmbH & Co. KG, Saerbeck, Germany, Safety Data Sheet SAERfix® EP, (2017).
Google Scholar
[32]
HEXION Stuttgart GmbH, Esslingen, Germany, Technical Data Sheet EPIKOTETM Resin MGS PR 685, (2017).
Google Scholar
[33]
Bühnen GmbH & Co. KG, Bremen, Germany, Operating Manuel HB 700K Spray, (2008).
Google Scholar
[34]
Hänsel Verbundtechnik GmbH, Iserlohn, Germany, Technical Datasheet PA 1541, 20013.
Google Scholar
[35]
AIRTECH EUROPE Sarl, Differdange, Luxembourg, Safety Data Sheer AIRTAC 2E, (2015).
Google Scholar
[36]
Henkel AG & Co. KGaA, Düsseldorf, Germany, Technical Data Sheet LOCTITE® FREKOTE 770-NC™, (2014).
Google Scholar
[37]
Chem-Trend Deutschland GmbH, Maisach Gerlinden, Germany, Product Data Sheet ZYVAX® 1070 W, (2018).
Google Scholar
[38]
Chem-Trend Deutschland GmbH, Maisach Gerlinden, Germany, Product Data Sheet ZYVAX® Fresh Start, (2018).
Google Scholar
[39]
SAERTEX GmbH & Co. KG, Saerbeck, Germany, Technical Data Sheet U-C-PB-168g/m²-1200mm, (2017).
Google Scholar
[40]
KERN & Sohn GmbH, Balingen, Germany, Operating Manual TGD, (2018).
Google Scholar
[41]
Memmert GmbH, Schwabach, Germany, Product Specification UF260plus, (2021).
Google Scholar
[42]
CONRAD Electronic SE., Hirschau, Germany, Product Data Sheet DL-200T, (2016).
Google Scholar
[43]
Hegewald & Peschke Meß- und Prüftechnik GmbH, Nossen, Germany, Technical Information Inspekt table 5-50 kN, (2021).
Google Scholar
[44]
GBM Deutschland, Darmstadt, Germany, Product Data Sheet U9C, (2020).
Google Scholar
[45]
DIN EN 28510-1, Adhesives - Peel test for a flexible-bonded-to-rigid test specimen assembly - Part 1: 90° peel; German version EN 28510-1:(2014).
DOI: 10.3403/00374148u
Google Scholar
[46]
HASCO Hasenclever GmbH & Co. KG, Lüdenscheid, Germany, Product Data Sheet Z110, (2021).
Google Scholar
[47]
otom Group GmbH, Bräunlingen, Germany, Product Data Sheet Sheath Thermocouplke Type K, (2021).
Google Scholar