Quantitative Assessment of Reactive and Non-Reactive Binder Systems on First Ply Adhesion for Dry Fiber Placement Processes

Article Preview

Abstract:

Dry fibers or fabrics do not possess an inherent tack, when compared to prepreg materials. In order to fixate dry fiber fabrics onto tooling geometries, auxiliary binder systems are necessary. These tackifying agents vary in terms of chemical composition and reactivity, processing parameters and appearance. One key aspect for most automated fiber placement technologies (incl. Dry Fiber Placement; Abr. DFP) is the adhesion of reinforcement materials on tooling surfaces, also referred to as first ply adhesion. Insufficient prepreg or binder adhesion will lead to fiber slippage thus increased scrap rates and is therefore crucial for high class composite performance. This study reveals quantitative insights on binder performance and indicates that the treatment with solvent-based release agents reduces first ply adhesion by up to 78%. Furthermore, it shows, that elevated tooling temperatures reduces binder adhesion by up to 49%.

You have full access to the following eBook

Info:

Periodical:

Pages:

1317-1326

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] C. Grant, Automated processes for composite aircraft structure, Industrial Robot: An International Journal, Vol. 33, Issue: 2, pp.117-121 (2006) https://doi.org/10.1108/01439910610651428.

DOI: 10.1108/01439910610651428

Google Scholar

[2] T. Rudberg, J. Nielson, M. Henscheid, J. Cemenska, Improving AFP Cell Performance, SAE Int. J. Aerosp. 7(2) (2014),.

DOI: 10.4271/2014-01-2272

Google Scholar

[3] M. Szcesny, F. Heieck, S. Carosella, P. Middendorf, H. Sehrschön, M. Schneiderbauer, The advanced ply placement process – an innovative direct 3D placement technology for plies and tapes, Advanced Manufacturing: Polymer & Composites Science, 3, pp.2-9 (2017),.

DOI: 10.1080/20550340.2017.1291398

Google Scholar

[4] D. Lukaszewicz, C. Ward, K.D. Potter, The engineering aspects of automated prepreg layup: History, present and future, Composites: Part B, 43, pp.997-1009 (2012), DOI: https://doi.org/10.1016/j.compositesb.2011.12.003.

DOI: 10.1016/j.compositesb.2011.12.003

Google Scholar

[5] T. Zenker, M. Gnaedinger, Consolidation Behavior of Fiber Steered Thermoplastic Automated Fiber Placement Preforms, Proceeding of International Conference and Exhibition on Thermoplastic Composites 2020. (2020).

Google Scholar

[6] O. Rimmel, Grundlagen der Imprägnierung von Dry Fiber Placement Preforms, Dissertation, Institut für Verbundwerkstoffe GmbH (2020), ISBN: 978-3-944440-37-8.

Google Scholar

[7] Information on https://www.compositesworld.com/articles/dry-fiber-placement-surpassing-limits, Last visited on: 06.12.(2021).

Google Scholar

[8] F. Helber, M. Szcesny, S. Carosella, P. Middendorf, Tack and Binder Solubility Investigations on Reactive and Non-Reactive Binder Systems, SAMPE Europe Conference 2019, Nantes. (2019).

Google Scholar

[9] S. Schmidt, T. Mahrholz, A. Kühn and P. Wierach, Powder binders used for the manufacturing of wind turbine rotor blades. Part 1. Characterization of resin-binder interaction and preform properties, Polymer Composites, Vol. 39, No. 3, pp.708-717 (2018), DOI: https://doi.org/10.1002/pc.23988.

DOI: 10.1002/pc.23988

Google Scholar

[10] Geßler, Andreas, Textile Integrationstechniken zur Herstellung vorkonfektionierter Verstärkungsstrukturen für FVK INTEX,, Final Report 2002; https://edocs.tib.eu/files/e01fb02/361430388.pdf; Last visited on: 06.12.(2021).

Google Scholar

[11] U. Beier, High-performance fibre-reinforced composites prepared by a novel preform manufacturing routine, Dissertation, 2020, ISBN: 978-3-941492-20-2.

Google Scholar

[12] K. Henning, Wirtschaftliche Herstellung von Faserverbundbauteilen mit Hilfe automatisiert hergestellter textiler Preforms, Dissertation, Shaker, 2008, ISBN: 9783832271336.

Google Scholar

[13] J. Schulz, E. Kühne, B. Wielage, Einsatz der Preformtechniken zur Produktivitätssteigerung bei der Verarbeitung von Faserverbundkunststoffen, 17. Symposium Verbundwerkstoffe und Werkstoffverbunde, 2009, DOI: https://doi.org/10.1002/9783527627110.ch54.

DOI: 10.1002/9783527627110.ch54

Google Scholar

[14] C.-H. Shih, J. Lee, Tackification of Textile Fiber Preforms in Resin Transfer Molding, Journal of Composite Materials, 35 (21), pp.1954-1981, 2001, DOI: https://doi.org/10.1177/002199801772661452.

DOI: 10.1177/002199801772661452

Google Scholar

[15] R.W. Hillermeier, J.C. Seferis, Interlayer toughening of resin transfer molding composites, Composites Part A: Applied Science and Manufacturing, , Volume 32, Issue 5, pp.721-729, 2001, DOI: https://doi.org/10.1016/S1359-835X(00)00088-9.

DOI: 10.1016/s1359-835x(00)00088-9

Google Scholar

[16] J. Brody, J. Gillespie, Reactive and Non-reactive Binders in Glass/Vinyl Ester Composites, Polymer Composites, Vol. 26, No. 3, pp.377-387, (2005).

DOI: 10.1002/pc.20068

Google Scholar

[17] M. Tanoğlu, S.A. Tuğrul, Investigating the effects of a polyester preforming binder on the mechanical and ballistic performance of E-glass fiber reinforced polyester composites, International Journal of Adhesion and Adhesives, Volume 23, Issue 1, Pages 1-8, 2003, DOI: https://doi.org/10.1016/S0143-7496(02)00061-1.

DOI: 10.1016/s0143-7496(02)00061-1

Google Scholar

[18] M. Bulat, F. Heieck, Binder Application Methods for textile Preforming Processes, LTH Faserverbund-Leichtbau, 2014, FL 21 200-02, Issue A.

Google Scholar

[19] B. Grisin, S. Carosella, P. Middendorf, Dry Fibre Placement: The Influence of Process Parameters on Mechanical Laminate Properties and Infusion Behaviour, Polymers 2021, Vol. 13 (21), DOI: https://doi.org/10.3390/polym13213853, (2021).

DOI: 10.3390/polym13213853

Google Scholar

[20] L. Veldenz, M. Di Francesco, P. Giddings, B.C. Kim & K. Potter, Material selection for automated dry fiber placement using the analytical hierarchy process, Advanced Manufacturing: Polymer & Composites Science, 2019,.

DOI: 10.1080/20550340.2018.1545377

Google Scholar

[21] Information on https://www.compositesworld.com/articles/airborne-siemens-and-sabic-partner-to-mass-produce-thermoplastic-composites; Last visited on: 06.12.(2021).

Google Scholar

[22] Information on https://www.mtorres.es/en/aeronautics/products/carbon-fiber/torresfiberlayup, Last visited on: 06.12.(2021).

Google Scholar

[23] Information on https://www.ifb.uni-stuttgart.de/forschung/fertigungstechnologie/app/, Last visited on: 06.12.(2021).

Google Scholar

[24] R&G Faserverbundwerkstoffe GmbH, Waldenbuch, Germany, Safety Data Sheet, (2021).

Google Scholar

[25] T. Meinhardt, I. Harismendy, F. Heieck, LOWFLIP – Tailored Snap-Cure Prepregs for novel Composite Production Processes, Proceedings of the 17th European Conference on Composite Materials 2016, Munich, Germany, June 26th – 30th, (2016).

Google Scholar

[26] SGL TECHNOLOGIES GmbH, Meitingen, Germany, Product Data Sheet, C U600-0/SD-E501/33%, (2021).

Google Scholar

[27] K. Heudorfer, M. Engelfried, J. Fial, S. Carosella, P. Middendorf, Characterisation of the Forming properties of wide unidirectional prepreg tapes using the advanced ply placement (APP) process, 8th EASN – CEAS International Conference on Manufacturing for Growth & Innovation.

Google Scholar

[28] HEXION Stuttgart GmbH, Esslingen, Germany, Technical Data Sheet EPIKOTETM Resin 05311, (2006).

Google Scholar

[29] HEXION Stuttgart GmbH, Esslingen, Germany, Technical Data Sheet EPIKOTETM Resin 05390, (2006).

Google Scholar

[30] Huntsman Advanced Materials (Switzerland) GmbH, Basel, Switzerland, Technical Data Sheet raldite® LT 3366, (2011).

Google Scholar

[31] SAERTEX GmbH & Co. KG, Saerbeck, Germany, Safety Data Sheet SAERfix® EP, (2017).

Google Scholar

[32] HEXION Stuttgart GmbH, Esslingen, Germany, Technical Data Sheet EPIKOTETM Resin MGS PR 685, (2017).

Google Scholar

[33] Bühnen GmbH & Co. KG, Bremen, Germany, Operating Manuel HB 700K Spray, (2008).

Google Scholar

[34] Hänsel Verbundtechnik GmbH, Iserlohn, Germany, Technical Datasheet PA 1541, 20013.

Google Scholar

[35] AIRTECH EUROPE Sarl, Differdange, Luxembourg, Safety Data Sheer AIRTAC 2E, (2015).

Google Scholar

[36] Henkel AG & Co. KGaA, Düsseldorf, Germany, Technical Data Sheet LOCTITE® FREKOTE 770-NC™, (2014).

Google Scholar

[37] Chem-Trend Deutschland GmbH, Maisach Gerlinden, Germany, Product Data Sheet ZYVAX® 1070 W, (2018).

Google Scholar

[38] Chem-Trend Deutschland GmbH, Maisach Gerlinden, Germany, Product Data Sheet ZYVAX® Fresh Start, (2018).

Google Scholar

[39] SAERTEX GmbH & Co. KG, Saerbeck, Germany, Technical Data Sheet U-C-PB-168g/m²-1200mm, (2017).

Google Scholar

[40] KERN & Sohn GmbH, Balingen, Germany, Operating Manual TGD, (2018).

Google Scholar

[41] Memmert GmbH, Schwabach, Germany, Product Specification UF260plus, (2021).

Google Scholar

[42] CONRAD Electronic SE., Hirschau, Germany, Product Data Sheet DL-200T, (2016).

Google Scholar

[43] Hegewald & Peschke Meß- und Prüftechnik GmbH, Nossen, Germany, Technical Information Inspekt table 5-50 kN, (2021).

Google Scholar

[44] GBM Deutschland, Darmstadt, Germany, Product Data Sheet U9C, (2020).

Google Scholar

[45] DIN EN 28510-1, Adhesives - Peel test for a flexible-bonded-to-rigid test specimen assembly - Part 1: 90° peel; German version EN 28510-1:(2014).

DOI: 10.3403/00374148u

Google Scholar

[46] HASCO Hasenclever GmbH & Co. KG, Lüdenscheid, Germany, Product Data Sheet Z110, (2021).

Google Scholar

[47] otom Group GmbH, Bräunlingen, Germany, Product Data Sheet Sheath Thermocouplke Type K, (2021).

Google Scholar