Evaluating the Corrosion Resistance of Inconel 625 Coatings, Processed by Compact Plasma Spray, for Applications in Concentrating Solar Power Plants

Article Preview

Abstract:

Thermal energy storage (TES) systems have paramount importance in the design of Concentrating Solar Power (CSP) plants. TES systems allow storing the energy collected from solar radiation as heat energy in a thermal fluid and, in that way, extending the energy duration period of the plant and making the produced electricity dispatchable, depending on the actual demand and not only on the availability of the sun. The thermal fluids, synthetic oils, or molten salts, usually operate at temperatures from 500°C up to 800°C. The harsh operative conditions bring out issues related to the compatibility with the construction materials of CSP components, i.e., carbon and stainless steel. Coating of low-alloy structural steel with high-resistant materials has been addressed as a promising solution for mitigating the corrosion in TES system components. Compact plasma spray process was used to deposit Inconel 625 alloy onto T22 carbon steel coupons. Nitrate salts mixture, 60%NaNO3-40KNO3, commonly employed in CSP systems as operative and thermal storage fluid was used as corrosion medium. The tests were conducted by immersing coated and uncoated samples in molten salts at 500°C for 1, 3 7, and 14 days to assess the corrosion behavior of the In625 coatings. After 24 hours of exposition to molten nitrate salts, the T22 surface showed a pronounced oxidized layer having a thickness of approximately 20 µm. This layer is mainly composed of oxygen, iron, and chromium, which are the main constituents of carbon steel, with a few traces of sodium and potassium derived from the reaction of salts with the steel. Inconel 625, on the other hand, showed the formation of very thin scales of corrosion products localized only on the surface of the sample. Longer exposition is expected to produce a more pronounced degradation of uncoated steel, but barely affect the Inconel 625 coating

You have full access to the following eBook

Info:

Periodical:

Pages:

1736-1745

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] F. Rovense, M. Perez, M. Amelio, V. Ferraro, N. Scornaienchi, Feasibility analysis of a solar field for a closed unfired Joule-Brayton cycle, Int J Heat Technol 35 (2017) 166–71.

DOI: 10.18280/ijht.35sp0123

Google Scholar

[2] F. Rovense, M.Á. Reyes-Belmonte, M. Romero, J. González-Aguilar, Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation, Energy 240 (2022) 122798.

DOI: 10.1016/j.energy.2021.122798

Google Scholar

[3] M. Walczak, F. Pineda, Á.G. Fernández, C. Mata-Torres, R.A. Escobar, Materials corrosion for thermal energy storage systems in concentrated solar power plants, Renew Sustain Energy Rev 86 (2018) 22–44.

DOI: 10.1016/j.rser.2018.01.010

Google Scholar

[4] M. Sarvghad, S. Delkasar Maher, D. Collard, M. Tassan, G. Will, T.A. Steinberg, Materials compatibility for the next generation of Concentrated Solar Power plants, Energy Storage Mater 14 (2018)179–98.

DOI: 10.1016/j.ensm.2018.02.023

Google Scholar

[5] S. Bell, T. Steinberg, G.Will, Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power, Renew. Sustain. Energy Rev. 114 (2019)109328.

DOI: 10.1016/j.rser.2019.109328

Google Scholar

[6] M.T. Islam, N. Huda, A.B. Abdullah, R.Saidur, A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies Current status and research trends, Renew Sustain Energy Rev 91 (2018) 987–1018.

DOI: 10.1016/j.rser.2018.04.097

Google Scholar

[7] K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Heat transfer fluids for concentrating solar power systems – A review, Appl Energy 146 (2015) 383–96.

DOI: 10.1016/j.apenergy.2015.01.125

Google Scholar

[8] S. Goods, R. Bradshaw, M. Prairie, J. Chavez, Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates. Sandia National Lab, Livermore, CA (United States) (1994).

DOI: 10.2172/10141843

Google Scholar

[9] A.G. Fernández, H. Galleguillos, E. Fuentealba, F.J. Pérez, Corrosion of stainless steels and low-Cr steel in molten Ca(NO3)2–NaNO3–KNO3 eutectic salt for direct energy storage in CSP plants, Sol Energy Mater Sol Cells 141 (2015) 7–13.

DOI: 10.1016/j.solmat.2015.05.004

Google Scholar

[10] A.G. Fernández, M. Cortes, E. Fuentealba, F.J. Pérez, Corrosion properties of a ternary nitrate/nitrite molten salt in concentrated solar technology, Renew Energy 80 (2015) 177–83.

DOI: 10.1016/j.renene.2015.01.072

Google Scholar

[11] M. Gonzalez, U. Nithiyanantham, E. Carbó-Argibay, O. Bondarchuk, Y. Grosu, A. Faik, Graphitization as efficient inhibitor of the carbon steel corrosion by molten binary nitrate salt for thermal energy storage at concentrated solar power, Sol Energy Mater Sol Cells 203 (2019) 110172.

DOI: 10.1016/j.solmat.2019.110172

Google Scholar

[12] W. Ding, A. Bonk, J. Gussone, T. Bauer, Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage, J Energy Storage 15 (2018) 408–14.

DOI: 10.1016/j.est.2017.12.007

Google Scholar

[13] H. Singh, D. Puri, S. Prakash, T.K. Ghosh, Hot corrosion of a plasma sprayed Ni3Al coating on a Ni-base superalloy, Mater Corros 58 (2007) 857–66.

DOI: 10.1002/maco.200704072

Google Scholar

[14] A. Agüero, F.J. García de Blas, M.C. García, R. Muelas, A. Román, Thermal spray coatings for molten carbonate fuel cells separator plates, Surf Coatings Technol 146–147 (2001) 578–85.

DOI: 10.1016/s0257-8972(01)01435-9

Google Scholar

[15] A. Agüero, Progress in the development of coatings for protection of new generation steam plant components, Energy Mater 3 (2008) 35–44.

DOI: 10.1179/174892407x248554

Google Scholar

[16] A. Astarita, S. Genna, C. Leone, F.M.C. Minutolo, F. Rubino, A. Squillace, Study of the Laser Remelting of a Cold Sprayed Titanium Layer, Procedia CIRP 33 (2015) 452–7.

DOI: 10.1016/j.procir.2015.06.101

Google Scholar

[17] F. Rubino, P. Ammendola, A. Astarita, F. Raganati, A. Squillace, A. Viscusi, et al. An Innovative Method to Produce Metal Foam Using Cold Gas Dynamic Spray Process Assisted by Fluidized Bed Mixing of Precursors, Key Eng Mater 651–653 (2015) 913–8.

DOI: 10.4028/www.scientific.net/kem.651-653.913

Google Scholar

[18] V. Paradiso, F. Rubino, F. Tucci, A. Astarita, P. Carlone, Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings, AIP Conf. Proc. 1960 (2018) 100011.

DOI: 10.1063/1.5034951

Google Scholar

[19] F. Rubino, A. Astarita, P. Carlone, S. Genna, C. Leone, F. Memola Capece Minutolo, et al. Selective Laser Post-Treatment on Titanium Cold Spray Coatings, Mater Manuf Process 31 (2016) 1500–6.

DOI: 10.1080/10426914.2015.1037912

Google Scholar

[20] F. Rubino, V. Paradiso, A. Astarita, P. Carlone, A. Squillace, Advances in Titanium on Aluminium Alloys Cold Spray Coatings, in: P. Cavaliere (Eds.), Cold-Spray Coatings, Springer International Publishing, Cham, 2018, p.225–49.

DOI: 10.1007/978-3-319-67183-3_7

Google Scholar

[21] A. Viscusi, A. Astarita, R. Della Gatta, F. Rubino, A perspective review on the bonding mechanisms in cold gas dynamic spray, Surf Eng 35 (2019) 743–71.

DOI: 10.1080/02670844.2018.1551768

Google Scholar

[22] J. Porcayo-Calderon, O. Sotelo-Mazon, V.M. Salinas-Bravo, C.D. Arrieta-Gonzalez, J.J. Ramos-Hernandez, C. Cuevas-Arteaga, Electrochemical Performance of Ni20Cr coatings applied by combustion powder spray in ZnCl2-KCl molten salts, Int J Electrochem Sci 7 (2012) 1134–48.

Google Scholar

[23] J. Porcayo-Calderón, O. Sotelo-Mazón, M. Casales-Diaz, J.A. Ascencio-Gutierrez, V.M. Salinas-Bravo, L. Martinez-Gomez, Electrochemical study of Ni20Cr coatings applied by HVOF Process in ZnCl2-KCl at high temperatures, J Anal Methods Chem 2014 (2014) 503618.

DOI: 10.1155/2014/503618

Google Scholar

[24] A.J.L. Marulanda, Corrosión en sales fundidas de un acero recubierto mediante rociado térmico por llama, Prospectiva 12 (2014 ) 15.

DOI: 10.15665/rp.v12i1.146

Google Scholar

[25] J.C. Gomez-Vidal, Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications, Npj Mater Degrad 1 (2017) 1–8.

DOI: 10.1038/s41529-017-0012-3

Google Scholar

[26] J.C. Gomez-Vidal, J. Noel, J. Weber, Corrosion evaluation of alloys and MCrAlX coatings in molten carbonates for thermal solar applications, Sol Energy Mater Sol Cells 157 (2016) 517–25.

DOI: 10.1016/j.solmat.2016.07.029

Google Scholar

[27] S.S. Raiman, R.T. Mayes, J.M. Kurley, R. Parrish, E. Vogli, Amorphous and partially-amorphous metal coatings for corrosion resistance in molten chloride salt, Sol Energy Mater Sol Cells 201 (2019) 110028.

DOI: 10.1016/j.solmat.2019.110028

Google Scholar

[28] F. Rubino, P. Poza, G. Pasquino, P. Carlone, Thermal Spray Processes in Concentrating Solar Power Technology, Metals 11 (2021) 1377.

DOI: 10.3390/met11091377

Google Scholar

[29] A. Rico, A. Salazar, M.E. Escobar, J. Rodriguez, P. Poza, Optimization of atmospheric low-power plasma spraying process parameters of Al2O3-50wt%Cr2O3 coatings, Surf Coatings Technol 354 (2018) 281–96.

DOI: 10.1016/j.surfcoat.2018.09.032

Google Scholar

[30] A. Soleimani Dorcheh, R.N. Durham, M.C. Galetz, Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 °C, Sol Energy Mater Sol Cells 144 (2016) 109–16.

DOI: 10.1016/j.solmat.2015.08.011

Google Scholar

[31] A.G. Fernández, M.I. Lasanta, F.J. Pérez, Molten Salt Corrosion of Stainless Steels and Low-Cr Steel in CSP Plants, Oxid Met 78 (2012) 329–48.

DOI: 10.1007/s11085-012-9310-x

Google Scholar

[32] X. Ou, Z. Sun, M. Sun, D. Zou, Hot-corrosion mechanism of Ni-Cr coatings at 650°C under different simulated corrosion conditions, J China Univ Min Technol 18 (2008) 444–8.

DOI: 10.1016/s1006-1266(08)60092-9

Google Scholar