[1]
F. Rovense, M. Perez, M. Amelio, V. Ferraro, N. Scornaienchi, Feasibility analysis of a solar field for a closed unfired Joule-Brayton cycle, Int J Heat Technol 35 (2017) 166–71.
DOI: 10.18280/ijht.35sp0123
Google Scholar
[2]
F. Rovense, M.Á. Reyes-Belmonte, M. Romero, J. González-Aguilar, Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation, Energy 240 (2022) 122798.
DOI: 10.1016/j.energy.2021.122798
Google Scholar
[3]
M. Walczak, F. Pineda, Á.G. Fernández, C. Mata-Torres, R.A. Escobar, Materials corrosion for thermal energy storage systems in concentrated solar power plants, Renew Sustain Energy Rev 86 (2018) 22–44.
DOI: 10.1016/j.rser.2018.01.010
Google Scholar
[4]
M. Sarvghad, S. Delkasar Maher, D. Collard, M. Tassan, G. Will, T.A. Steinberg, Materials compatibility for the next generation of Concentrated Solar Power plants, Energy Storage Mater 14 (2018)179–98.
DOI: 10.1016/j.ensm.2018.02.023
Google Scholar
[5]
S. Bell, T. Steinberg, G.Will, Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power, Renew. Sustain. Energy Rev. 114 (2019)109328.
DOI: 10.1016/j.rser.2019.109328
Google Scholar
[6]
M.T. Islam, N. Huda, A.B. Abdullah, R.Saidur, A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies Current status and research trends, Renew Sustain Energy Rev 91 (2018) 987–1018.
DOI: 10.1016/j.rser.2018.04.097
Google Scholar
[7]
K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Heat transfer fluids for concentrating solar power systems – A review, Appl Energy 146 (2015) 383–96.
DOI: 10.1016/j.apenergy.2015.01.125
Google Scholar
[8]
S. Goods, R. Bradshaw, M. Prairie, J. Chavez, Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates. Sandia National Lab, Livermore, CA (United States) (1994).
DOI: 10.2172/10141843
Google Scholar
[9]
A.G. Fernández, H. Galleguillos, E. Fuentealba, F.J. Pérez, Corrosion of stainless steels and low-Cr steel in molten Ca(NO3)2–NaNO3–KNO3 eutectic salt for direct energy storage in CSP plants, Sol Energy Mater Sol Cells 141 (2015) 7–13.
DOI: 10.1016/j.solmat.2015.05.004
Google Scholar
[10]
A.G. Fernández, M. Cortes, E. Fuentealba, F.J. Pérez, Corrosion properties of a ternary nitrate/nitrite molten salt in concentrated solar technology, Renew Energy 80 (2015) 177–83.
DOI: 10.1016/j.renene.2015.01.072
Google Scholar
[11]
M. Gonzalez, U. Nithiyanantham, E. Carbó-Argibay, O. Bondarchuk, Y. Grosu, A. Faik, Graphitization as efficient inhibitor of the carbon steel corrosion by molten binary nitrate salt for thermal energy storage at concentrated solar power, Sol Energy Mater Sol Cells 203 (2019) 110172.
DOI: 10.1016/j.solmat.2019.110172
Google Scholar
[12]
W. Ding, A. Bonk, J. Gussone, T. Bauer, Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage, J Energy Storage 15 (2018) 408–14.
DOI: 10.1016/j.est.2017.12.007
Google Scholar
[13]
H. Singh, D. Puri, S. Prakash, T.K. Ghosh, Hot corrosion of a plasma sprayed Ni3Al coating on a Ni-base superalloy, Mater Corros 58 (2007) 857–66.
DOI: 10.1002/maco.200704072
Google Scholar
[14]
A. Agüero, F.J. García de Blas, M.C. García, R. Muelas, A. Román, Thermal spray coatings for molten carbonate fuel cells separator plates, Surf Coatings Technol 146–147 (2001) 578–85.
DOI: 10.1016/s0257-8972(01)01435-9
Google Scholar
[15]
A. Agüero, Progress in the development of coatings for protection of new generation steam plant components, Energy Mater 3 (2008) 35–44.
DOI: 10.1179/174892407x248554
Google Scholar
[16]
A. Astarita, S. Genna, C. Leone, F.M.C. Minutolo, F. Rubino, A. Squillace, Study of the Laser Remelting of a Cold Sprayed Titanium Layer, Procedia CIRP 33 (2015) 452–7.
DOI: 10.1016/j.procir.2015.06.101
Google Scholar
[17]
F. Rubino, P. Ammendola, A. Astarita, F. Raganati, A. Squillace, A. Viscusi, et al. An Innovative Method to Produce Metal Foam Using Cold Gas Dynamic Spray Process Assisted by Fluidized Bed Mixing of Precursors, Key Eng Mater 651–653 (2015) 913–8.
DOI: 10.4028/www.scientific.net/kem.651-653.913
Google Scholar
[18]
V. Paradiso, F. Rubino, F. Tucci, A. Astarita, P. Carlone, Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings, AIP Conf. Proc. 1960 (2018) 100011.
DOI: 10.1063/1.5034951
Google Scholar
[19]
F. Rubino, A. Astarita, P. Carlone, S. Genna, C. Leone, F. Memola Capece Minutolo, et al. Selective Laser Post-Treatment on Titanium Cold Spray Coatings, Mater Manuf Process 31 (2016) 1500–6.
DOI: 10.1080/10426914.2015.1037912
Google Scholar
[20]
F. Rubino, V. Paradiso, A. Astarita, P. Carlone, A. Squillace, Advances in Titanium on Aluminium Alloys Cold Spray Coatings, in: P. Cavaliere (Eds.), Cold-Spray Coatings, Springer International Publishing, Cham, 2018, p.225–49.
DOI: 10.1007/978-3-319-67183-3_7
Google Scholar
[21]
A. Viscusi, A. Astarita, R. Della Gatta, F. Rubino, A perspective review on the bonding mechanisms in cold gas dynamic spray, Surf Eng 35 (2019) 743–71.
DOI: 10.1080/02670844.2018.1551768
Google Scholar
[22]
J. Porcayo-Calderon, O. Sotelo-Mazon, V.M. Salinas-Bravo, C.D. Arrieta-Gonzalez, J.J. Ramos-Hernandez, C. Cuevas-Arteaga, Electrochemical Performance of Ni20Cr coatings applied by combustion powder spray in ZnCl2-KCl molten salts, Int J Electrochem Sci 7 (2012) 1134–48.
Google Scholar
[23]
J. Porcayo-Calderón, O. Sotelo-Mazón, M. Casales-Diaz, J.A. Ascencio-Gutierrez, V.M. Salinas-Bravo, L. Martinez-Gomez, Electrochemical study of Ni20Cr coatings applied by HVOF Process in ZnCl2-KCl at high temperatures, J Anal Methods Chem 2014 (2014) 503618.
DOI: 10.1155/2014/503618
Google Scholar
[24]
A.J.L. Marulanda, Corrosión en sales fundidas de un acero recubierto mediante rociado térmico por llama, Prospectiva 12 (2014 ) 15.
DOI: 10.15665/rp.v12i1.146
Google Scholar
[25]
J.C. Gomez-Vidal, Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications, Npj Mater Degrad 1 (2017) 1–8.
DOI: 10.1038/s41529-017-0012-3
Google Scholar
[26]
J.C. Gomez-Vidal, J. Noel, J. Weber, Corrosion evaluation of alloys and MCrAlX coatings in molten carbonates for thermal solar applications, Sol Energy Mater Sol Cells 157 (2016) 517–25.
DOI: 10.1016/j.solmat.2016.07.029
Google Scholar
[27]
S.S. Raiman, R.T. Mayes, J.M. Kurley, R. Parrish, E. Vogli, Amorphous and partially-amorphous metal coatings for corrosion resistance in molten chloride salt, Sol Energy Mater Sol Cells 201 (2019) 110028.
DOI: 10.1016/j.solmat.2019.110028
Google Scholar
[28]
F. Rubino, P. Poza, G. Pasquino, P. Carlone, Thermal Spray Processes in Concentrating Solar Power Technology, Metals 11 (2021) 1377.
DOI: 10.3390/met11091377
Google Scholar
[29]
A. Rico, A. Salazar, M.E. Escobar, J. Rodriguez, P. Poza, Optimization of atmospheric low-power plasma spraying process parameters of Al2O3-50wt%Cr2O3 coatings, Surf Coatings Technol 354 (2018) 281–96.
DOI: 10.1016/j.surfcoat.2018.09.032
Google Scholar
[30]
A. Soleimani Dorcheh, R.N. Durham, M.C. Galetz, Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 °C, Sol Energy Mater Sol Cells 144 (2016) 109–16.
DOI: 10.1016/j.solmat.2015.08.011
Google Scholar
[31]
A.G. Fernández, M.I. Lasanta, F.J. Pérez, Molten Salt Corrosion of Stainless Steels and Low-Cr Steel in CSP Plants, Oxid Met 78 (2012) 329–48.
DOI: 10.1007/s11085-012-9310-x
Google Scholar
[32]
X. Ou, Z. Sun, M. Sun, D. Zou, Hot-corrosion mechanism of Ni-Cr coatings at 650°C under different simulated corrosion conditions, J China Univ Min Technol 18 (2008) 444–8.
DOI: 10.1016/s1006-1266(08)60092-9
Google Scholar