Synthesis of ZnO and CuO Nanowires by Thermal Oxidation on Metallic Substrates

Article Preview

Abstract:

In this research work, brass (Cu - 37.2 wt% Zn) and Cu (99.9 wt%) wires having diameters of 200 μm were thermally oxidized in N2 containing 5% O2, at a flow rate of 200 sccm and in the ambient atmosphere respectively, to support the growth of nanowires. The oxidation temperature was varied from 300 to 600 °C and the as-grown nanowires were characterized by field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) spectroscope, and transmission electron microscope (TEM). Results show that ZnO and CuO nanowires are formed on brass and Cu wires, respectively. The ZnO nanowires are branched and CuO nanowires are straight with tapered morphology. ZnO nanowires having hexagonal wurtzite structure grow along the <1 1 0> directions whereas, CuO nanowires have monoclinic structure. A diffusion based stress induced model is proposed to explain the growth mechanism of the nanowires. Thermal oxidation process is a suitable platform for synthesizing ZnO and CuO nanowires, which can be used in in-situ device fabrication.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science. 292 (2001) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[2] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301.

DOI: 10.1063/1.1992666

Google Scholar

[3] D.C. Look, B. Claflin, Y.I. Alivov, S.J. Park, The future of ZnO light emitters, Phys. Status Solidi A. 10 (2004) 2203-2212.

DOI: 10.1002/pssa.200404803

Google Scholar

[4] M. Xiao, Comparative optical spectroscopy of gallium-nitride and aluminum-nitride nanostructures deposited onto silicon substrate, Optik. 127 (2016) 4396-4399.

DOI: 10.1016/j.ijleo.2016.01.141

Google Scholar

[5] S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, S.J. Young, B.R. Huang, A CuO nanowire infrared photodetector, Sens. Actuator A Phys. 171 (2011) 207-211.

DOI: 10.1016/j.sna.2011.09.011

Google Scholar

[6] S. Mridha, D. Basak, Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications, Semicond. Sci. Technol. 21 (2006) 928-932.

DOI: 10.1088/0268-1242/21/7/017

Google Scholar

[7] A. Zúñiga, L. Fonseca, J.A. Souza, C. Rivaldo-Gomez, C.D. Pomar, D. Criado, Anomalous ferromagnetic behavior and size effects in CuO nanowires, J. Magn. Magn. Mater. 471 (2019) 77-81.

DOI: 10.1016/j.jmmm.2018.09.048

Google Scholar

[8] R. Khan, P. Uthirakumar, T.H. Kim, I.-H. Lee, Enhanced photocurrent performance of partially decorated Au nanoparticles on ZnO nanorods based UV photodetector, Mater. Res. Bull. 115 (2019) 176-181.

DOI: 10.1016/j.materresbull.2019.03.017

Google Scholar

[9] M. Tetseo, P. Deb, S. Daimary, J.C. Dhar, CuO nanowire-based metal semiconductor metal infrared photodetector, Appl. Phys. A. 127 (2021) 380.

DOI: 10.1007/s00339-021-04532-7

Google Scholar

[10] L. Wang, Y. Zhao, K. Zheng, J. She, S. Deng, N. Xu, J. Chen, Fabrication of large-area ZnO nanowire field emitter arrays by thermal oxidation for high-current application, Appl. Surf. Sci. 484 (2019) 966-974.

DOI: 10.1016/j.apsusc.2019.04.169

Google Scholar

[11] H.T. Hsueh, T.J. Hsueh, S.J. Chang, T.Y. Tsai, F.Y. Hung, S.P. Chang, W.Y. Weng, B.T. Dai, CuO-nanowire field emitter prepared on glass substrate, IEEE Trans. Nanotechnol. 10 (2011) 1161-1165.

DOI: 10.1109/tnano.2011.2121092

Google Scholar

[12] R. Gao, X. Cheng, S. Gao, X. Zhang, Y. Xu, H. Zhao, L. Huo, Highly selective detection of saturated vapors of abused drugs by ZnO nanorod bundles gas sensor, Appl. Surf. Sci. 485 (2019) 266-273.

DOI: 10.1016/j.apsusc.2019.04.189

Google Scholar

[13] S. Kulkarni, R. Ghosh, A simple approach for sensing and accurate prediction of multiple organic vapors by sensors based on CuO nanowires, Sens. Actuators B Chem. 335 (2021) 129701.

DOI: 10.1016/j.snb.2021.129701

Google Scholar

[14] M.I. Fathima, K.S.J. Wilson, Role of multilayer antireflective coating in ZnO based dye sensitized solar cell, Vacuum. 165 (2019) 58-61.

DOI: 10.1016/j.vacuum.2019.04.007

Google Scholar

[15] M. Iqbal, A. A.Thebo, A.H. Shah, A. Iqbal, K. H.Thebo, S.Phulpoto, M.A. Mohsin, Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires, Inorg. Chem. Commun. 76 (2017) 71-76.

DOI: 10.1016/j.inoche.2016.11.023

Google Scholar

[16] Y. Ding, J. Xu, L. Chen, J. Yao, S. Dai, J. Wu, T. Hayat, A. Alsaedi, Pierced ZnO nanosheets via a template-free photopolymerization in microemulsion, J. Alloys Compd. 787 (2019) 779-785.

DOI: 10.1016/j.jallcom.2019.02.107

Google Scholar

[17] L.B. Chen, N. Lu, C.M. Xu, H.C. Yu, T.H. Wang, Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries, Electrochim. Acta. 54 (2009 ) 4198-4201.

DOI: 10.1016/j.electacta.2009.02.065

Google Scholar

[18] Q. Luo, P. Xu, Y. Qiu, Z. Cheng, X. Chang, H. Fan, Synthesis of ZnO tetrapods for high-performance supercapacitor applications, Mater. Lett. 198 (2017) 192-195.

DOI: 10.1016/j.matlet.2017.04.032

Google Scholar

[19] X. Zhang, C. Zhang, A. Abas, Y. Zhang, X. Mu, J. Zhou, Q. Su, W. Lan, E. Xie, Ag nanoparticles enhanced vertically-aligned CuO nanowire arrays grown on Cu foam for stable hybrid supercapacitors with high energy density, Electrochim. Acta. 296 (2019) 535-544.

DOI: 10.1016/j.electacta.2018.11.046

Google Scholar

[20] J.L. Yang, S.J. An, W.I. Park, G.-C. Yi, W. Choi, Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition, Adv. Mater. 16 (2004) 1661-1664.

DOI: 10.1002/adma.200306673

Google Scholar

[21] N. Kana, K. Kaviyarasu, T. Khamliche, C.M. Magdalane, M. Maaza, Stability and thermal conductivity of CuO nanowire for catalyticapplications, J. Environ. Chem. Eng. 7 (2019) 1032552.

DOI: 10.1016/j.jece.2019.103255

Google Scholar

[22] M.E. Bustos, F. Hevia, S. Fuentes, A.I. Martínez, R.A. Zárate, A novel route for the preparation of self-assembled CuO hierarchical nanostructures by hydrothermal processing at high pressure, Mater. Lett. 297 (2021) 129936.

DOI: 10.1016/j.matlet.2021.129936

Google Scholar

[23] K.-S. Choi, S.-P. Chang, Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes, Mater. Lett. 230 (2018) 48-52.

DOI: 10.1016/j.matlet.2018.07.031

Google Scholar

[24] H. Guan, C. Shao, B. Chen, J. Gong, X. Yang, A novel method for making CuO superfine fibres via an electrospinning technique, Inorg. Chem. Commun. 6 (2003) 1409-1411.

DOI: 10.1016/j.inoche.2003.08.021

Google Scholar

[25] E. Oh, H.-Y. Choi, S.-H. Jung, S. Cho, J.C. Kim, K.-H. Lee, S.-W. Kang, J. Kim, J.-Y. Yun, S.-H. Jeong, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation, Sens. Actuators B Chem. 141 (2009) 239-243.

DOI: 10.1016/j.snb.2009.06.031

Google Scholar

[26] S.M.K. Aboul-Fotouh, Methanol conversion to DME as a blue fuel: The beneficial use of ultrasonic irradiation for the preparation of CuO/H-MOR nanocatalyst, J. Fuel Chem. Technol. 42 (2014) 1340-1350.

DOI: 10.1016/s1872-5813(14)60051-7

Google Scholar

[27] S. Delice, M. Isik, N.M. Gasanly, Traps distribution in sol-gel synthesized ZnO nanoparticles, Mater. Lett. 245 (2019) 103-105.

DOI: 10.1016/j.matlet.2019.02.123

Google Scholar

[28] N. Kumar, S.S. Parui, S. Limbu, D.K. Mahato, N. Tiwari, R.N. Chauhan, Structural and optical properties of sol-gel derived CuO and Cu2O nanoparticles, Mater. Today: Proc. 41 (2021) 237-241.

DOI: 10.1016/j.matpr.2020.08.800

Google Scholar

[29] N. Chen, F. Ju, F. Zhou, S. Chen, K. Wei, P. He, Growth and characterization of chemical vapor deposition diamond coating incorporated amorphous carbon with high Raman bands induced by CuO particles, Diam. Relat. Mater. 116 (2021) 108387.

DOI: 10.1016/j.diamond.2021.108387

Google Scholar

[30] S.Y. Bae, C.W. Na, J.H. Kang, J. Park, Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation, J. Phys. Chem. B. 109 (2005) 2526-2531.

DOI: 10.1021/jp0458708

Google Scholar

[31] D. Mahana, A.K. Mauraya, P. Pal, P. Singh, S.K. Muthusamy, Comparative study on surface states and CO gas sensing characteristics of CuO thin films synthesised by vacuum evaporation and sputtering processes, Mater. Res. Bull. 145 (2022) 111567.

DOI: 10.1016/j.materresbull.2021.111567

Google Scholar

[32] C.-Q. Luo, F.C.-C. Ling, M.A. Rahman, M. Phillips, C. Ton-That, C. Liao, K. Shih, J. Lin, H.W. Tam, A.B. Djurišić, S.-P. Wang, Surface polarity control in ZnO films deposited by pulsed laser deposition, Appl. Surf. Sci. 483 (2019) 1129-1135.

DOI: 10.1016/j.apsusc.2019.03.228

Google Scholar

[33] A.A. Menazea, A.M. Mostafa, Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation, J. Environ. Chem. Eng. 8 (2020) 104104.

DOI: 10.1016/j.jece.2020.104104

Google Scholar

[34] A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, K. Kalantar-zadeh, Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing, IEEE Sens.J. 7 (2007) 919-924.

DOI: 10.1109/jsen.2007.895963

Google Scholar

[35] J.L.S. Cuaila, A.M.H.d. Andrade, J. Geshev, M. Gamino, Correlations between parameters and structure of CuO(111) films grown by RF reactive sputtering at room temperature, Mater. Today: Pro. 14 (2019) 164-167.

DOI: 10.1016/j.matpr.2019.05.077

Google Scholar

[36] H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett. 86 (2005) 243503.

DOI: 10.1063/1.1949707

Google Scholar

[37] K.G. Yang, P. Hu, S.X. Wu, L.Z. Ren, M. Yang, W.Q. Zhou, F.M. Yu, Y.J. Wang, M. Meng, G.L. Wang, S.W. Li, Room-temperature ferromagnetic CuO thin film grown by plasma-assisted molecular beam epitaxy, Mater. Lett. 166 (2016) 23-25.

DOI: 10.1016/j.matlet.2015.11.128

Google Scholar

[38] M.M. Arafat, S. Rozali, A.S.M.A. Haseeb, S. Ibrahim, Direct and catalyst-free synthesis of ZnO nanowires on brass by thermal oxidation, Nanotechnology. 31 (2020) 175603.

DOI: 10.1088/1361-6528/ab69b3

Google Scholar

[39] M.M. Arafat, B. Dinan, A.S.M.A. Haseeb, S.A. Akbar, B.M.A. Rahman, S. Rozali, S. Naher, Growth of 1D TiO2 nanostructures on Ti substrates incorporated with residual stress through humid oxidation and their characterizations Nanotechnology. 32 (2021) 475607 (475617pp).

DOI: 10.1088/1361-6528/ac1d77

Google Scholar

[40] M.M. Arafat, A.S.M.A. Haseeb, S.A. Akbar, M.Z. Quadir, In-situ fabricated gas sensors based on one dimensional core-shell TiO2-Al2O3 nanostructures, Sens. Actuators B Chem. 238 (2017) 972-984.

DOI: 10.1016/j.snb.2016.07.135

Google Scholar

[41] M.M. Arafat, A.S.M.A. Haseeb, S.A. Akbar, Growth and characterization of the oxide scales and core/shell nanowires on Ti-6Al-4V particles during thermal oxidation, Ceram. Int. 41 (2015) 4401-4409.

DOI: 10.1016/j.ceramint.2014.11.130

Google Scholar

[42] M.M. Arafat, A.S.M.A. Haseeb, B. Dinan, S.A. Akbar, Stress enhanced TiO2 nanowire growth on Ti-6Al-4V particles by thermal oxidation, Ceram. Int. 39 (2013) 6517-6526.

DOI: 10.1016/j.ceramint.2013.01.084

Google Scholar

[43] K. Huo, Y. Hu, J. Fu, X. Wang, P.K. Chu, Z. Hu, Y. Chen, Direct and large-area growth of one-dimensional ZnO nanostructures from and on a brass substrate, J. Phys. Chem. C. 111 (2007) 5876-5881.

DOI: 10.1021/jp070135s

Google Scholar

[44] X. Wen, Y. Fang, Q. Pang, C. Yang, J. Wang, W. Ge, K.S. Wong, S. Yang, ZnO nanobelt arrays grown directly from and on zinc substrates: synthesis, characterization, and applications, J. Phys. Chem. B. 109 (2005) 15303-15308.

DOI: 10.1021/jp052466f

Google Scholar

[45] S. Likhittaphon, R. Panyadee, W. Fakyam, S. Charojrochkul, T. Sornchamni, N. Laosiripojana, S. Assabumrungrat, P. Kim-Lohsoontorn, Effect of CuO/ZnO catalyst preparation condition on alcohol-assisted methanol synthesis from carbon dioxide and hydrogen, Int. J. Hydrog. Energy. 44 (2019) 20782-20791.

DOI: 10.1016/j.ijhydene.2018.07.021

Google Scholar

[46] C.-M. Chou, Y.-C. Chang, P.-S. Lin, F.-K. Liu, Growth of Cu-doped ZnO nanowires or ZnO-CuO nanowires on the same brass foil with high performance photocatalytic activity and stability, Mater. Chem. Phys. 201 (2017) 18-25.

DOI: 10.1016/j.matchemphys.2017.08.023

Google Scholar

[47] S. Paul, J. Sultana, A. Karmakar, S. Chattopadhyay, Effect of prolonged growth on the chemical bath deposited ZnO nanowires and consequent photovoltaic performance of n-ZnO NWs/p-CuO heterojunction solar cells, Mater. Today: Proc. 4 (2017) 12496-12499.

DOI: 10.1016/j.matpr.2017.10.050

Google Scholar

[48] J. Sultana, S. Paul, R. Saha, S. Sikdar, A. Karmakar, S. Chattopadhyay, Optical and electronic properties of chemical bath deposited p-CuO and n-ZnO nanowires on silicon substrates: p-CuO/n-ZnO nanowires solar cells with high open-circuit voltage and short-circuit current, Thin Solid Films. 699 (2020) 137861.

DOI: 10.1016/j.tsf.2020.137861

Google Scholar

[49] Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors, Ceram. Int. 45 (2019) 1513-1522.

DOI: 10.1016/j.ceramint.2018.10.022

Google Scholar

[50] L. Sun, E. Chen, T. Guo, Field emission enhancement of composite structure of ZnO quantum dots and CuO nanowires by Al2O3 transition layer optimization, Ceram. Int. 46 (2020) 15565-15571.

DOI: 10.1016/j.ceramint.2020.03.103

Google Scholar

[51] M.A. Khan, N. Nayan, M.K. Ahmad, S.C. Fhong, M.S.M. Ali, M.K. Mustafa, M. Tahir, Interface study of hybrid CuO nanoparticles embedded ZnO nanowires heterojunction synthesized by controlled vapor deposition approach for optoelectronic devices, Opt. Mater. 117 (2021) 111132.

DOI: 10.1016/j.optmat.2021.111132

Google Scholar

[52] T. B. Massalski (Editor-in-Chief), H. Okamoto, P.R. Subramanian, L. Kacprzak (Editors), Binary alloy phase diagrams, 2nd edition, ASM International, Materials Park, Ohio, USA, (1990).

DOI: 10.1002/adma.19910031215

Google Scholar

[53] M.R. Khanlary, V. Vahedi, A. Reyhani, Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures, Molecules. 17 (2012) 5021-5029.

DOI: 10.3390/molecules17055021

Google Scholar

[54] O. Martíneza, V. Hortelano, J. Jiménez, J.L. Plaza, S.d. Dios, J. Olvera, E. Diéguez, R. Fath, J.G. Lozano, T. Ben, D. González, J. Mass, Growth of ZnO nanowires through thermal oxidation of metallic zinc films on CdTe substrates, J. Alloys Compd. 509 (2011 ) 5400-5407.

DOI: 10.1016/j.jallcom.2011.02.063

Google Scholar

[55] H.-Q. Liang, L.-Z. Pan, Z.-J. Liu, Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors, Mater. Lett. 62 (2008) 1797-1800.

DOI: 10.1016/j.matlet.2007.10.010

Google Scholar

[56] A. Kumar, A.K. Srivastava, P. Tiwari, R.V. Nandedkar, The effect of growth parameters on the aspect ratio and number density of CuO nanorods, J. Phys. Condens. Matter. 16 (2004) 8531-8543.

DOI: 10.1088/0953-8984/16/47/007

Google Scholar

[57] Information on https://www.iap.tuwien.ac.at/www/surface/vapor_pressure (accessed on 25 November 2021).

Google Scholar

[58] J. Liang, N. Kishi, T. Soga, T. Jimbo, Cross-sectional characterization of cupric oxide nanowires grown by thermal oxidation of copper foils, Appl. Surf. Sci. 257 (2010) 62-66.

DOI: 10.1016/j.apsusc.2010.06.034

Google Scholar

[59] L. Yuan, Y. Wang, R. Mema, G. Zhou, Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals, Acta Mater. 59 (2011) 2491-2500.

DOI: 10.1016/j.actamat.2010.12.052

Google Scholar

[60] B.J. Hansen, G. Lu, J. Chen, Direct oxidation growth of CuO nanowires from copper-containing substrates, J. Nanomater. 2008 (2008) Article ID: 830474.

DOI: 10.1155/2008/830474

Google Scholar

[61] F. Wu, Y. Myung, P. Banerjee, Unravelling transient phases during thermal oxidation of copper for dense CuO nanowire growth, CrystEngComm. 16 (2014) 3264-3267.

DOI: 10.1039/c4ce00275j

Google Scholar

[62] A.M.B. Gonçalves, L.C. Campos, A.S. Ferlauto, R.G. Lacerda, On the growth and electrical characterization of CuO nanowires by thermal oxidation, J. Appl. Phys. 106 (2009) 034303.

DOI: 10.1063/1.3187833

Google Scholar