[1]
M. Durante, A. Formisano, A. Viscusi, L. Carrino, An innovative manufacturing method of aluminum foam sandwiches using a mesh-grid reinforcement as mold, Int. J. Adv. Manuf. Technol. 107 (2020) 3039-3048.
DOI: 10.1007/s00170-020-05244-7
Google Scholar
[2]
O. Lucia, P. Maussion, E.J. Dede, J.M. Burdio, Induction heating technology and its applications: Past developments, current technology, and future challenges, IEEE Trans. Ind. Electron. 61 (2014) 2509-2520.
DOI: 10.1109/tie.2013.2281162
Google Scholar
[3]
R.E. Haimbaugh, Practical induction heat treating, ASM International, (2015).
Google Scholar
[4]
S. Lupi, M. Forzan, A. Aliferov, Induction and direct resistance heating: Theory and numerical modeling Model. (2015) 1-370.
DOI: 10.1007/978-3-319-03479-9
Google Scholar
[5]
T. Watanabe, S. Nagaya, N. Hirano, S. Fukui, Elemental development of metal melting by electromagnetic induction heating using superconductor coils, IEEE Trans. Appl. Supercond. 26 (2016) 1-4.
DOI: 10.1109/tasc.2016.2524651
Google Scholar
[6]
K. Demianová, M. Sahul, M. Behúlová, M. Turňa, Application of high-frequency induction heating for brazing of dissimilar metals, Adv. Mater. Res. 214 (2011) 450-454.
DOI: 10.4028/www.scientific.net/amr.214.450
Google Scholar
[7]
M.M. Dewidar, J.-K. Lim, Manufacturing processes and properties of copper‒graphite composites produced by high frequency induction heating sintering, J. Compos. Mater. 41 (2007) 2183-2194.
DOI: 10.1177/0021998307074145
Google Scholar
[8]
L. Nele, B. Palmieri, Electromagnetic heating for adhesive melting in CFRTP joining: study, analysis, and testing, Int. J. Adv. Manuf. Technol. 106 (2020) 5317-5331.
DOI: 10.1007/s00170-019-04910-9
Google Scholar
[9]
M.J. Troughton, Chapter 11 - Induction welding, in: M.J. Troughton (Ed.), Handbook of Plastic Joining, Second Edition, William Andrew Publishing, Boston, 2009, pp.113-120.
Google Scholar
[10]
G.K. Sharma, P. Pant, P.K. Jain, P.K. Kankar, P. Tandon, On the suitability of induction heating system for metal additive manufacturing, Int. J. Adv. Manuf. Technol. 235 (2020) 219-229.
DOI: 10.1177/0954405420937854
Google Scholar
[11]
V. Rudnev, D. Loveless, R.L. Cook, M. Black, Handbook of induction heating, (2002).
Google Scholar
[12]
Y.P. Jeon, C.G. Kang, S.M. Lee, Effects of cell size on compression and bending strength of aluminum-foamed material by complex stirring in induction heating, J. Mater. Process. Technol. 209 (2009) 435-444.
DOI: 10.1016/j.jmatprotec.2008.02.017
Google Scholar
[13]
L. Moser, Experimental analysis and modeling of susceptorless induction welding of high performance thermoplastic polymer composites, Inst. für Verbundwerkstoffe, (2012).
Google Scholar
[14]
J. Lázaro, E. Solórzano, M.A. Rodríguez-Pérez, O. Rämer, F. García-Moreno, J. Banhart, Heat treatment of aluminium foam precursors: Effects on foam expansion and final cellular structure, Procedia Mater. Sci. 4 (2014) 287-292.
DOI: 10.1016/j.mspro.2014.07.559
Google Scholar
[15]
A. Viscusi, L. Carrino, M. Durante, A. Formisano, On the bending behaviour and the failure mechanisms of grid-reinforced aluminium foam cylinders by using an experimental/numerical approach, Int. J. Adv. Manuf. Technol. 106 (2020) 1683-1693.
DOI: 10.1007/s00170-019-04414-6
Google Scholar
[16]
J. Bahnart, Metal foams: Production and stability, Adv. Eng. Mater. 8 (2006) 781-794.
Google Scholar