[1]
S. Chakraborty, V. Dey, S.K. Ghosh, A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics, Precis. Eng. 40 (2015) 1–6.
DOI: 10.1016/j.precisioneng.2014.11.003
Google Scholar
[2]
H. Marashi, D.M. Jafarlou, A.A. Sarhan, M. Hamdi, State of the art in powder mixed dielectric for EDM applications, Precis. Eng. 46 (2016) 11–33.
DOI: 10.1016/j.precisioneng.2016.05.010
Google Scholar
[3]
W. Zhao, Q. Meng, Z. Wang, The application of research on powder mixed EDM in rough machining, J. Mater. Process. Technol. Bd. 129, Nr. 1-3 (2002) 30–33.
Google Scholar
[4]
P. Peças and E. Henriques, Influence of silicon powder-mixed dielectric on conventional electrical discharge machining, Int. J. Mach. Tools Manuf. Bd. 43, Nr. 14 (2003) 1465–1471.
DOI: 10.1016/s0890-6955(03)00169-x
Google Scholar
[5]
Y.-F. Tzeng and C.-Y. Lee, Effects of Powder Characteristics on Electrodischarge Machining Efficiency, Int. J. Adv. Manuf. Technol. 17 (2001) 586-592.
Google Scholar
[6]
M. Kolli and A. Kumar, Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method, Eng. Sci. Technol. an Int. J. Bd. 18, Nr. 4 (2015) 524–535.
DOI: 10.1016/j.jestch.2015.03.009
Google Scholar
[7]
V.S. Jatti and S. Bagane, Thermo-electric modelling, simulation and experimental validation of powder mixed electric discharge machining (PMEDM) of BeCu alloys, Alex. Eng. J. Bd. 57, Nr. 2 (2018) 643–653.
DOI: 10.1016/j.aej.2017.02.023
Google Scholar
[8]
Y.-S. Kim and C.-N. Chu, The Effects of Graphite Powder on Tool Wear in Micro Electrical Discharge Machining, Procedia CIRP, Bd. 68 (2018) 553–558.
DOI: 10.1016/j.procir.2017.12.121
Google Scholar
[9]
S. Tripathy and D.K. Tripathy, Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis, Eng. Sci. Technol. an Int. J. Bd. 19, Nr. 1 (2016) 62–70.
DOI: 10.1016/j.jestch.2015.07.010
Google Scholar
[10]
S. Tripathy and D.K. Tripathy, Surface Characterization and Multi-response optimization of EDM process parameters using powder mixed dielectric, Materials Today: Proceedings, Bd. 4, Nr. 2 (2017) 2058–(2067).
DOI: 10.1016/j.matpr.2017.02.051
Google Scholar
[11]
G. Talla, S. Gangopadhyay and C.K. Biswas, Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625, J. Mater. Eng. Perform. Bd. 25, Nr. 2 (2016) 704–717.
DOI: 10.1007/s11665-015-1835-0
Google Scholar
[12]
M. Munz, Funkenerosives Senken mit großen Aspektverhältnissen, Ph. D., Technische Universität Bergakademie Freiberg – The University of Resources (2015).
Google Scholar
[13]
M. Munz, M. Risto, R. Haas, The phenomenon of polarity in EDM drilling process using water based dielectrics, Procedia CIRP 42 (2016) 532–536.
DOI: 10.1016/j.procir.2016.02.246
Google Scholar
[14]
W.-I. Jutzler, Funkenerosives Senken - Verfahrenseinflüsse auf die Oberflächenbeschaffenheit und die Festigkeit des Werkstückes, Dissertation, RWTH Aachen University (1982).
Google Scholar
[15]
A. Karden, Funkenerosive Senkbearbeitung mit leistungssteigernden Elektrodenwerkstoffen und Arbeitsmedien, Dissertation, RWTH Aachen University (2000).
Google Scholar
[16]
H. Juhr, Kontinuierliche technologische Abbildung für die Senkerosion – ein Beitrag zu Rationalisierung der Generierung von Parametertechnologien, TU Dresden (2005).
Google Scholar
[17]
M. Risto, R. Haas, M. Munz, Optimization of the EDM drilling process to increase the productivity and geometrical accuracy, Procedia CIRP 42 (2016) 537-542.
DOI: 10.1016/j.procir.2016.02.247
Google Scholar
[18]
M. Munz, M. Risto, R. Haas, Specifics of Flushing in Electrical Discharge Drilling, Procedia CIRP 6 (2013) 83-88.
DOI: 10.1016/j.procir.2013.03.024
Google Scholar