Experimental Investigation of the Effect of EDM Debris Particles Mixed into the Dielectric Fluid on Tool Feed Rate in Drilling-EDM

Article Preview

Abstract:

In this paper the potential of the recirculation of the EDM debris particles of the workpiece material into the dielectric fluid to increase the tool feed rate vf in drilling Electrical Discharge Machining (drilling-EDM) is experimentally investigated. Two-Channel electrodes made of copper (Cu) and brass (CuZn) in the range from 1.0 mm to 2.5 mm were used. The effect of the EDM debris particles in the dielectric fluid was investigated at a discharge current ie of 25 A, a discharge duration te of 50 μs and a duty cycle of 80 % by comparing the EDM pulse characteristics and the feed rate vf of the EDM process with and without debris particles added to the dielectric fluid (particle concentrations C1 = 2.5 g/l and C0 = 0 g/l, respectively). By the recirculation of EDM debris particles the feed rate could be increased up to 36 % depending on the machining conditions. Furthermore, it was observed that the increase in the feed rate is due to the increase of the percentage of discharge pulses and the decrease of short-circuit pulses as well as a more stable machining process.

You have full access to the following eBook

Info:

Periodical:

Pages:

1696-1702

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] S. Chakraborty, V. Dey, S.K. Ghosh, A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics, Precis. Eng. 40 (2015) 1–6.

DOI: 10.1016/j.precisioneng.2014.11.003

Google Scholar

[2] H. Marashi, D.M. Jafarlou, A.A. Sarhan, M. Hamdi, State of the art in powder mixed dielectric for EDM applications, Precis. Eng. 46 (2016) 11–33.

DOI: 10.1016/j.precisioneng.2016.05.010

Google Scholar

[3] W. Zhao, Q. Meng, Z. Wang, The application of research on powder mixed EDM in rough machining, J. Mater. Process. Technol. Bd. 129, Nr. 1-3 (2002) 30–33.

Google Scholar

[4] P. Peças and E. Henriques, Influence of silicon powder-mixed dielectric on conventional electrical discharge machining, Int. J. Mach. Tools Manuf. Bd. 43, Nr. 14 (2003) 1465–1471.

DOI: 10.1016/s0890-6955(03)00169-x

Google Scholar

[5] Y.-F. Tzeng and C.-Y. Lee, Effects of Powder Characteristics on Electrodischarge Machining Efficiency, Int. J. Adv. Manuf. Technol. 17 (2001) 586-592.

Google Scholar

[6] M. Kolli and A. Kumar, Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method, Eng. Sci. Technol. an Int. J. Bd. 18, Nr. 4 (2015) 524–535.

DOI: 10.1016/j.jestch.2015.03.009

Google Scholar

[7] V.S. Jatti and S. Bagane, Thermo-electric modelling, simulation and experimental validation of powder mixed electric discharge machining (PMEDM) of BeCu alloys, Alex. Eng. J. Bd. 57, Nr. 2 (2018) 643–653.

DOI: 10.1016/j.aej.2017.02.023

Google Scholar

[8] Y.-S. Kim and C.-N. Chu, The Effects of Graphite Powder on Tool Wear in Micro Electrical Discharge Machining, Procedia CIRP, Bd. 68 (2018) 553–558.

DOI: 10.1016/j.procir.2017.12.121

Google Scholar

[9] S. Tripathy and D.K. Tripathy, Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis, Eng. Sci. Technol. an Int. J. Bd. 19, Nr. 1 (2016) 62–70.

DOI: 10.1016/j.jestch.2015.07.010

Google Scholar

[10] S. Tripathy and D.K. Tripathy, Surface Characterization and Multi-response optimization of EDM process parameters using powder mixed dielectric, Materials Today: Proceedings, Bd. 4, Nr. 2 (2017) 2058–(2067).

DOI: 10.1016/j.matpr.2017.02.051

Google Scholar

[11] G. Talla, S. Gangopadhyay and C.K. Biswas, Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625, J. Mater. Eng. Perform. Bd. 25, Nr. 2 (2016) 704–717.

DOI: 10.1007/s11665-015-1835-0

Google Scholar

[12] M. Munz, Funkenerosives Senken mit großen Aspektverhältnissen, Ph. D., Technische Universität Bergakademie Freiberg – The University of Resources (2015).

Google Scholar

[13] M. Munz, M. Risto, R. Haas, The phenomenon of polarity in EDM drilling process using water based dielectrics, Procedia CIRP 42 (2016) 532–536.

DOI: 10.1016/j.procir.2016.02.246

Google Scholar

[14] W.-I. Jutzler, Funkenerosives Senken - Verfahrenseinflüsse auf die Oberflächenbeschaffenheit und die Festigkeit des Werkstückes, Dissertation, RWTH Aachen University (1982).

Google Scholar

[15] A. Karden, Funkenerosive Senkbearbeitung mit leistungssteigernden Elektrodenwerkstoffen und Arbeitsmedien, Dissertation, RWTH Aachen University (2000).

Google Scholar

[16] H. Juhr, Kontinuierliche technologische Abbildung für die Senkerosion – ein Beitrag zu Rationalisierung der Generierung von Parametertechnologien, TU Dresden (2005).

Google Scholar

[17] M. Risto, R. Haas, M. Munz, Optimization of the EDM drilling process to increase the productivity and geometrical accuracy, Procedia CIRP 42 (2016) 537-542.

DOI: 10.1016/j.procir.2016.02.247

Google Scholar

[18] M. Munz, M. Risto, R. Haas, Specifics of Flushing in Electrical Discharge Drilling, Procedia CIRP 6 (2013) 83-88.

DOI: 10.1016/j.procir.2013.03.024

Google Scholar