[1]
F. Paris, K. E. Jackson, A Study of Failure Criteria of Fibrous Composite Materials, Office (March) (2001) 76.
Google Scholar
[2]
B. Soares, R. Preto, L. Sousa, L. Reis, Mechanical behavior of basalt fibers in a basalt-UP composite, Procedia Structural Integrity 1 (February) (2016) 82-89.
DOI: 10.1016/j.prostr.2016.02.012
Google Scholar
[3]
V. Fiore, T. Scalici, G. Di Bella, A. Valenza, A review on basalt fibre and its composites, Composites Part B: Engineering 74 (2015) 74-94.
DOI: 10.1016/j.compositesb.2014.12.034
Google Scholar
[4]
P. Rozylo, M. Ferdynus, H. Debski, S. Samborski, Progressive failure analysis of thin-walled composite structures verified experimentally, Materials 13 (5) (2020). doi:10.3390/ ma13051138.
DOI: 10.3390/ma13051138
Google Scholar
[5]
A. Viscusi, R. D. Gatta, F. Delloro, I. Papa, A. S. Perna, A. Astarita, A novel manufacturing route for integrated 3D-printed composites and cold-sprayed metallic layer, Materials and Manufacturing Processes 0 (0) (2021) 1-14.
DOI: 10.1080/10426914.2021.1942908
Google Scholar
[6]
L. Esposito, G. P. Pucillo, V. Rosiello, On the geometric transferability of the delamination shear limit for CFRP laminate in bending, Theoretical and Applied Fracture Mechanics 91 (2017) 17-24.
DOI: 10.1016/j.tafmec.2017.03.003
Google Scholar
[7]
W. J. Cantwell, J. Morton, The impact resistance of composite materials - a review, Composites 22 (5) (1991) 347-362.
DOI: 10.1016/0010-4361(91)90549-V
Google Scholar
[8]
G. Lamanna, C. G. Opran, Numerical characterization of pretensioning of a hybrid joint under longitudinal load, Macromolecular Symposia 396 (1) (2021) 2100009. doi:https://doi. org/10.1002/masy.202100009.
DOI: 10.1002/masy.202100009
Google Scholar
[9]
G. Lamanna, S. M. Ion, C. G. Opran, Flexural effects evaluation on hybrid joints under uniaxial tensile load, Macromolecular Symposia 396 (1) (2021) 2100007. doi:https://doi.org/10. 1002/masy.202100007.
DOI: 10.1002/masy.202100007
Google Scholar
[10]
M. O. Richardson, M. J. Wisheart, Review of low-velocity impact properties of composite materials, Composites Part A: Applied Science and Manufacturing 27 (12 PART A) (1996) 1123-1131.
DOI: 10.1016/1359-835X(96)00074-7
Google Scholar
[11]
Z. Hashin, Failure Criteria for Unidirectional Fiber Composite, Journal of Applied Mechanics 47 (June) (1980) 329-334.
DOI: 10.1115/1.3153664
Google Scholar
[12]
G. Lamanna, M. Perrella, C. G. Opran, Numerical and experimental investigation on the influence of tightening in a hybrid single lap joint, Macromolecular Symposia 396 (1) (2021) 2100010. doi:https://doi.org/10.1002/masy.202100010.
DOI: 10.1002/masy.202100010
Google Scholar
[13]
A. Dogan, V. Arikan, Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites, Composites Part B: Engineering 127 (2017) 63-69. doi:10.1016/j.compositesb.2017.06.027.[14] R. C. Batra, G. Gopinath, J. Q. Zheng, Damage and failure in low energy impact of fiberreinforced polymeric composite laminates, Composite Structures 94 (2) (2012) 540-547.
DOI: 10.1016/j.compstruct.2011.08.015
Google Scholar
[15]
Y. Swolfs, I. Verpoest, L. Gorbatikh, Recent advances in fibre-hybrid composites: materials selection, opportunities and applications, International Materials Reviews 64 (4) (2019) 181-215.
DOI: 10.1080/09506608.2018.1467365
Google Scholar
[16]
N. K. Naik, R. Ramasimha, H. Arya, S. V. Prabhu, N. ShamaRao, Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates, Composites Part B:Engineering 32 (7) (2001) 565-574.
DOI: 10.1016/S1359-8368(01)00036-1
Google Scholar
[17]
I. Papa, L. Boccarusso, A. Langella, V. Lopresto, Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests, Composite Structures 232 (July 2019) (2020).
DOI: 10.1016/j.compstruct.2019.111571
Google Scholar
[18]
D. Mocerino, L. Boccarusso, D. De Fazio, M. Durante, A. Langella, M. Meo, F. Pinto, F. Rizzo, Prediction of the Impact Behavior of Bio-hybrid Composites Using Finite Element Method, ESAFORM 2021 06 (2021) 1-11.
DOI: 10.25518/esaform21.2651
Google Scholar
[19]
I. Papa, F. Donadio, V. S. Gálvez, V. Lopresto, On the low- and high-velocity impact behaviour of hybrid composite materials at room and extreme temperature, Journal of Composite Materials (2020) 00219983211047688doi:10.1177/00219983211047688.
DOI: 10.1177/00219983211047688
Google Scholar
[20]
E. Sevkat, B. Liaw, F. Delale, B. B. Raju, Drop-weight impact of plain-woven hybrid glassgraphite/toughened epoxy composites, Composites Part A: Applied Science and Manufacturing 40 (8) (2009) 1090-1110.
DOI: 10.1016/j.compositesa.2009.04.028
Google Scholar
[21]
L. Esposito, A. Bertocco, R. Sepe, E. Armentani, 3D strip model for continuous roll-forming process simulation, Procedia Structural Integrity 12 (2018) 370-379.
DOI: 10.1016/j.prostr.2018.11.080
Google Scholar
[22]
L. Esposito, A. Bertocco, G. Cricrì, V. Rosiello, Welding-repair effect on F357-T6 aluminum castings: analysis of fatigue life, International Journal of Advanced Manufacturing Technology 102 (9-12) (2019) 3699-3706.
DOI: 10.1007/s00170-019-03436-4
Google Scholar
[23]
Y. Swolfs, Y. Geboes, L. Gorbatikh, S. T. Pinho, The importance of translaminar fracture toughness for the penetration impact behaviour of woven carbon/glass hybrid composites, Composites Part A: Applied Science and Manufacturing 103 (2017) 1-8.
DOI: 10.1016/j.compositesa.2017.09.009
Google Scholar
[24]
A. K. Bandaru, S. Patel, S. Ahmad, N. Bhatnagar, An experimental and numerical investigation on the low velocity impact response of thermoplastic hybrid composites, Journal of Composite Materials 52 (7) (2018) 877-889.
DOI: 10.1177/0021998317714043
Google Scholar
[25]
M. Sayer, N. B. Bektaş, O. Sayman, An experimental investigation on the impact behavior of hybrid composite plates, Composite Structures 92 (5) (2010) 1256-1262.
DOI: 10.1016/j.compstruct.2009.10.036
Google Scholar
[26]
F. Xu, X. Zhang, H. Zhang, A review on functionally graded structures and materials for energy absorption, Engineering Structures 171 (May) (2018) 309-325. doi:10.1016/j.engstruct. 2018.05.094.[27] V. Lampitella, M. Trofa, A. Astarita, G. D'Avino, Discrete Element Method Analysis of the Spreading Mechanism and Its Influence on Powder Bed Characteristics in Additive Manufacturing, Micromachines 12 (4) (2021).
DOI: 10.3390/mi12040392
Google Scholar
[28]
M. Bruno, L. Carrino, L. Esposito, V. Lopresto, I. Papa, P. Russo, A. Viscusi, A Numerical Investigation about Temperature Influence on Thermoplastic Hot-Formed Reinforced Composites Under Low-Velocity Impact 16 (2021) 1-10.
DOI: 10.25518/esaform21.524
Google Scholar
[29]
A. Turon, C. G. Dávila, P. P. Camanho, J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models, Engineering Fracture Mechanics 74 (10) (2007) 1665-1682.
DOI: 10.1016/j.engfracmech.2006.08.025
Google Scholar
[30]
A. Turon, P. P. Camanho, J. Costa, C. G. Dávila, An Interface Damage Model for the Simulation of Delamination Under Variable-Mode Ratio in Composite Materials, Nasa/Tm-2004- 213277 (NASA/TM-2004-213277) (2004).
DOI: 10.1016/j.mechmat.2005.10.003
Google Scholar
[31]
M. Soroush, K. Malekzadeh Fard, M. Shahravi, Finite element simulation of interlaminar and intralaminar damage in laminated composite plates subjected to impact, Latin American Journal of Solids and Structures 15 (6) (2018).
DOI: 10.1590/1679-78254609
Google Scholar
[32]
K. Song, C. Davila, C. Rose, Guidelines and parameter selection for the simulation of progressive delamination, 2008 ABAQUS User's Conference (2008) 1-15.
Google Scholar
[33]
M. Kenane, M. L. Benzeggagh, Fracture Toughness of Unidirectional Glass / Epoxy Composites Under Fatigue Loading, Composites Science and Technology 3538 (97) (1997) 597-605.
DOI: 10.1016/s0266-3538(97)00021-3
Google Scholar