Damage Analysis of Hybrid Composites Under Multi-Impact Loads: An Experimental and Numerical Study

Article Preview

Abstract:

Laminated composite structures are subjected to impact damage during maintenance and manufacturing operations and their life service. Driven by the necessity to value damage tolerance and durability of composite materials, an analysis of multi-hit impact is conducted to reproduce the real service conditions. Despite many studies in the literature investigated the properties of composites at low impact velocity, in contrast the behavior of the hybrid configuration, especially at repeated impacts, result still little known. This work presents an experimental and numerical study of the dynamic behavior at the repeated low-velocity impact of a carbon and glass fibers hybrid composite laminate.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] F. Paris, K. E. Jackson, A Study of Failure Criteria of Fibrous Composite Materials, Office (March) (2001) 76.

Google Scholar

[2] B. Soares, R. Preto, L. Sousa, L. Reis, Mechanical behavior of basalt fibers in a basalt-UP composite, Procedia Structural Integrity 1 (February) (2016) 82-89.

DOI: 10.1016/j.prostr.2016.02.012

Google Scholar

[3] V. Fiore, T. Scalici, G. Di Bella, A. Valenza, A review on basalt fibre and its composites, Composites Part B: Engineering 74 (2015) 74-94.

DOI: 10.1016/j.compositesb.2014.12.034

Google Scholar

[4] P. Rozylo, M. Ferdynus, H. Debski, S. Samborski, Progressive failure analysis of thin-walled composite structures verified experimentally, Materials 13 (5) (2020). doi:10.3390/ ma13051138.

DOI: 10.3390/ma13051138

Google Scholar

[5] A. Viscusi, R. D. Gatta, F. Delloro, I. Papa, A. S. Perna, A. Astarita, A novel manufacturing route for integrated 3D-printed composites and cold-sprayed metallic layer, Materials and Manufacturing Processes 0 (0) (2021) 1-14.

DOI: 10.1080/10426914.2021.1942908

Google Scholar

[6] L. Esposito, G. P. Pucillo, V. Rosiello, On the geometric transferability of the delamination shear limit for CFRP laminate in bending, Theoretical and Applied Fracture Mechanics 91 (2017) 17-24.

DOI: 10.1016/j.tafmec.2017.03.003

Google Scholar

[7] W. J. Cantwell, J. Morton, The impact resistance of composite materials - a review, Composites 22 (5) (1991) 347-362.

DOI: 10.1016/0010-4361(91)90549-V

Google Scholar

[8] G. Lamanna, C. G. Opran, Numerical characterization of pretensioning of a hybrid joint under longitudinal load, Macromolecular Symposia 396 (1) (2021) 2100009. doi:https://doi. org/10.1002/masy.202100009.

DOI: 10.1002/masy.202100009

Google Scholar

[9] G. Lamanna, S. M. Ion, C. G. Opran, Flexural effects evaluation on hybrid joints under uniaxial tensile load, Macromolecular Symposia 396 (1) (2021) 2100007. doi:https://doi.org/10. 1002/masy.202100007.

DOI: 10.1002/masy.202100007

Google Scholar

[10] M. O. Richardson, M. J. Wisheart, Review of low-velocity impact properties of composite materials, Composites Part A: Applied Science and Manufacturing 27 (12 PART A) (1996) 1123-1131.

DOI: 10.1016/1359-835X(96)00074-7

Google Scholar

[11] Z. Hashin, Failure Criteria for Unidirectional Fiber Composite, Journal of Applied Mechanics 47 (June) (1980) 329-334.

DOI: 10.1115/1.3153664

Google Scholar

[12] G. Lamanna, M. Perrella, C. G. Opran, Numerical and experimental investigation on the influence of tightening in a hybrid single lap joint, Macromolecular Symposia 396 (1) (2021) 2100010. doi:https://doi.org/10.1002/masy.202100010.

DOI: 10.1002/masy.202100010

Google Scholar

[13] A. Dogan, V. Arikan, Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites, Composites Part B: Engineering 127 (2017) 63-69. doi:10.1016/j.compositesb.2017.06.027.[14] R. C. Batra, G. Gopinath, J. Q. Zheng, Damage and failure in low energy impact of fiberreinforced polymeric composite laminates, Composite Structures 94 (2) (2012) 540-547.

DOI: 10.1016/j.compstruct.2011.08.015

Google Scholar

[15] Y. Swolfs, I. Verpoest, L. Gorbatikh, Recent advances in fibre-hybrid composites: materials selection, opportunities and applications, International Materials Reviews 64 (4) (2019) 181-215.

DOI: 10.1080/09506608.2018.1467365

Google Scholar

[16] N. K. Naik, R. Ramasimha, H. Arya, S. V. Prabhu, N. ShamaRao, Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates, Composites Part B:Engineering 32 (7) (2001) 565-574.

DOI: 10.1016/S1359-8368(01)00036-1

Google Scholar

[17] I. Papa, L. Boccarusso, A. Langella, V. Lopresto, Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests, Composite Structures 232 (July 2019) (2020).

DOI: 10.1016/j.compstruct.2019.111571

Google Scholar

[18] D. Mocerino, L. Boccarusso, D. De Fazio, M. Durante, A. Langella, M. Meo, F. Pinto, F. Rizzo, Prediction of the Impact Behavior of Bio-hybrid Composites Using Finite Element Method, ESAFORM 2021 06 (2021) 1-11.

DOI: 10.25518/esaform21.2651

Google Scholar

[19] I. Papa, F. Donadio, V. S. Gálvez, V. Lopresto, On the low- and high-velocity impact behaviour of hybrid composite materials at room and extreme temperature, Journal of Composite Materials (2020) 00219983211047688doi:10.1177/00219983211047688.

DOI: 10.1177/00219983211047688

Google Scholar

[20] E. Sevkat, B. Liaw, F. Delale, B. B. Raju, Drop-weight impact of plain-woven hybrid glassgraphite/toughened epoxy composites, Composites Part A: Applied Science and Manufacturing 40 (8) (2009) 1090-1110.

DOI: 10.1016/j.compositesa.2009.04.028

Google Scholar

[21] L. Esposito, A. Bertocco, R. Sepe, E. Armentani, 3D strip model for continuous roll-forming process simulation, Procedia Structural Integrity 12 (2018) 370-379.

DOI: 10.1016/j.prostr.2018.11.080

Google Scholar

[22] L. Esposito, A. Bertocco, G. Cricrì, V. Rosiello, Welding-repair effect on F357-T6 aluminum castings: analysis of fatigue life, International Journal of Advanced Manufacturing Technology 102 (9-12) (2019) 3699-3706.

DOI: 10.1007/s00170-019-03436-4

Google Scholar

[23] Y. Swolfs, Y. Geboes, L. Gorbatikh, S. T. Pinho, The importance of translaminar fracture toughness for the penetration impact behaviour of woven carbon/glass hybrid composites, Composites Part A: Applied Science and Manufacturing 103 (2017) 1-8.

DOI: 10.1016/j.compositesa.2017.09.009

Google Scholar

[24] A. K. Bandaru, S. Patel, S. Ahmad, N. Bhatnagar, An experimental and numerical investigation on the low velocity impact response of thermoplastic hybrid composites, Journal of Composite Materials 52 (7) (2018) 877-889.

DOI: 10.1177/0021998317714043

Google Scholar

[25] M. Sayer, N. B. Bektaş, O. Sayman, An experimental investigation on the impact behavior of hybrid composite plates, Composite Structures 92 (5) (2010) 1256-1262.

DOI: 10.1016/j.compstruct.2009.10.036

Google Scholar

[26] F. Xu, X. Zhang, H. Zhang, A review on functionally graded structures and materials for energy absorption, Engineering Structures 171 (May) (2018) 309-325. doi:10.1016/j.engstruct. 2018.05.094.[27] V. Lampitella, M. Trofa, A. Astarita, G. D'Avino, Discrete Element Method Analysis of the Spreading Mechanism and Its Influence on Powder Bed Characteristics in Additive Manufacturing, Micromachines 12 (4) (2021).

DOI: 10.3390/mi12040392

Google Scholar

[28] M. Bruno, L. Carrino, L. Esposito, V. Lopresto, I. Papa, P. Russo, A. Viscusi, A Numerical Investigation about Temperature Influence on Thermoplastic Hot-Formed Reinforced Composites Under Low-Velocity Impact 16 (2021) 1-10.

DOI: 10.25518/esaform21.524

Google Scholar

[29] A. Turon, C. G. Dávila, P. P. Camanho, J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models, Engineering Fracture Mechanics 74 (10) (2007) 1665-1682.

DOI: 10.1016/j.engfracmech.2006.08.025

Google Scholar

[30] A. Turon, P. P. Camanho, J. Costa, C. G. Dávila, An Interface Damage Model for the Simulation of Delamination Under Variable-Mode Ratio in Composite Materials, Nasa/Tm-2004- 213277 (NASA/TM-2004-213277) (2004).

DOI: 10.1016/j.mechmat.2005.10.003

Google Scholar

[31] M. Soroush, K. Malekzadeh Fard, M. Shahravi, Finite element simulation of interlaminar and intralaminar damage in laminated composite plates subjected to impact, Latin American Journal of Solids and Structures 15 (6) (2018).

DOI: 10.1590/1679-78254609

Google Scholar

[32] K. Song, C. Davila, C. Rose, Guidelines and parameter selection for the simulation of progressive delamination, 2008 ABAQUS User's Conference (2008) 1-15.

Google Scholar

[33] M. Kenane, M. L. Benzeggagh, Fracture Toughness of Unidirectional Glass / Epoxy Composites Under Fatigue Loading, Composites Science and Technology 3538 (97) (1997) 597-605.

DOI: 10.1016/s0266-3538(97)00021-3

Google Scholar