Combined Probabilistic Approach and Stress State Dependency on the Failure Modeling of HPDC Aural-2 Alloy

Article Preview

Abstract:

Both experimental method and numerical method are used to analyze the large variation in the material ductility of high pressure die casting (HPDC) Aural-2 alloy in the present work. The X-ray tomography (XRT) technique is used to characterize and reveal the significant variation of the internal porosity for the investigated material. The Mises plasticity model in conjunction with a mixed Swift-Voce hardening law, and a stress state dependent fracture initiation criterion are used to accurately describe the deformation response of the material. Very good agreement with the experimental results is obtained in the predicted average force-displacement responses for the calibrated stress states. A probabilistic damage mechanics model is put forward to depict the apparent stochastic ductile fracture behavior over a wide range of stress states. The 5th and 95th percentiles of the fracture initiation locus are recalibrated based on the proposed probabilistic ductile fracture model, which could provide an almost perfect prediction of the maximum and minimum bounds of force-displacement curves.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. Olofsson, I.L. Svensson, P. Lava, D. Debruyne, Characterisation and investigation of local variations in mechanical behaviour in cast aluminium using gradient solidification, Digital Image Correlation and finite element simulation, Materials & Design (1980-2015) 56 (2014) 755-762.

DOI: 10.1016/j.matdes.2013.12.036

Google Scholar

[2] M. Jolly, L. Katgerman, Modelling of defects in aluminium cast products, Progress in Materials Science (2021).

DOI: 10.1016/j.pmatsci.2021.100824

Google Scholar

[3] Y. Zhang, J. Zheng, F. Shen, W. Han, S. Münstermann, H. Shou, Q. Liu, Analysis of Local Stress/Strain Fields in an HPDC AM60 Plate Containing Pores with Various Characteristics, Engineering Failure Analysis (2021).

DOI: 10.1016/j.engfailanal.2021.105503

Google Scholar

[4] Y. Zhang, J. Zheng, Y. Xia, H. Shou, W. Tan, W. Han, Q. Liu, Porosity quantification for ductility prediction in high pressure die casting AM60 alloy using 3D X-ray tomography, Materials Science and Engineering: A 772 (2020) 138781.

DOI: 10.1016/j.msea.2019.138781

Google Scholar

[5] Y. Zhang, J. Zheng, H. Shou, J. Li, L. Wan, W. Han, Q. Liu, L. Xia, The gradient microstructure and deformation heterogeneity in HPDC AM60 alloy, Materials Science and Engineering: A 792 (2020).

DOI: 10.1016/j.msea.2020.139647

Google Scholar

[6] J. Kim, X. Gao, T.S. Srivatsan, Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity, Engineering Fracture Mechanics 71(3) (2004) 379-400.

DOI: 10.1016/s0013-7944(03)00114-0

Google Scholar

[7] H. Mae, X. Teng, Y. Bai, T. Wierzbicki, Calibration of ductile fracture properties of a cast aluminum alloy, Materials Science and Engineering: A 459(1-2) (2007) 156-166.

DOI: 10.1016/j.msea.2007.01.047

Google Scholar

[8] K. Nahshon, Z. Xue, A modified Gurson model and its application to punch-out experiments, Engineering Fracture Mechanics 76(8) (2009) 997-1009.

DOI: 10.1016/j.engfracmech.2009.01.003

Google Scholar

[9] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity 24(6) (2008) 1071-1096.

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[10] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International Journal of Fracture 161(1) (2009) 1-20.

DOI: 10.1007/s10704-009-9422-8

Google Scholar

[11] K. Pack, T. Tancogne-Dejean, M.B. Gorji, D. Mohr, Hosford-Coulomb ductile failure model for shell elements: Experimental identification and validation for DP980 steel and aluminum 6016-T4, International Journal of Solids and Structures 151 (2018) 214-232.

DOI: 10.1016/j.ijsolstr.2018.08.006

Google Scholar

[12] Y. Lou, J.W. Yoon, Anisotropic ductile fracture criterion based on linear transformation, International Journal of Plasticity 93 (2017) 3-25.

DOI: 10.1016/j.ijplas.2017.04.008

Google Scholar

[13] J. Lian, M. Sharaf, F. Archie, S. Münstermann, A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets, International Journal of Damage Mechanics 22(2) (2012) 188-218.

DOI: 10.1177/1056789512439319

Google Scholar

[14] M. Baral, J. Ha, Y.P. Korkolis, Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy, International Journal of Fracture 216(1) (2019) 101-121.

DOI: 10.1007/s10704-019-00345-1

Google Scholar

[15] L. Mu, Z. Jia, Z. Ma, F. Shen, Y. Sun, Y. Zang, A theoretical prediction framework for the construction of a fracture forming limit curve accounting for fracture pattern transition, International Journal of Plasticity 129 (2020).

DOI: 10.1016/j.ijplas.2020.102706

Google Scholar

[16] F. Shen, H. Wang, Z. Liu, W. Liu, M. Könemann, G. Yuan, G. Wang, S. Münstermann, J. Lian, Local formability of medium-Mn steel, Journal of Materials Processing Technology 299 (2022).

DOI: 10.1016/j.jmatprotec.2021.117368

Google Scholar

[17] T. Tancogne-Dejean, C.C. Roth, U. Woy, D. Mohr, Probabilistic fracture of Ti–6Al–4V made through additive layer manufacturing, International Journal of Plasticity 78 (2016) 145-172.

DOI: 10.1016/j.ijplas.2015.09.007

Google Scholar

[18] F. Pütz, F. Shen, M. Könemann, S. Münstermann, The differences of damage initiation and accumulation of DP steels: a numerical and experimental analysis, International Journal of Fracture 226(1) (2020) 1-15.

DOI: 10.1007/s10704-020-00457-z

Google Scholar