[1]
R. Hill. Elastic properties of reinforced solids: some theoretical principles,. In: Journal of the Mechanics and Physics of Solids 11.5 (1963), pp.357-372.
DOI: 10.1016/0022-5096(63)90036-x
Google Scholar
[2]
A. Lewis and A. Geltmacher. Image-based modeling of the response of experimental 3D microstructures to mechanical loading,. In: Scripta Materialia 55.1 (2006), pp.81-85.
DOI: 10.1016/j.scriptamat.2006.01.043
Google Scholar
[3]
J. H. Kim et al. Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels,. In: Materials Science and Engineering: A 539 (2012), pp.259-270.
DOI: 10.1016/j.msea.2012.01.092
Google Scholar
[4]
B. Anbarlooie et al. Experimental and 3D micromechanical analysis of stress-strain behavior and damage initiation in dual-phase steels,. In: Journal of Materials Engineering and Performance 28.5 (2019), pp.2903-2918.
DOI: 10.1007/s11665-019-04029-8
Google Scholar
[5]
H. Lim et al. Investigating mesh sensitivity and polycrystalline RVEs in crystal plasticity finite element simulations". In: International Journal of Plasticity 121 (2019), pp.101-115.[6] P. G. Christodoulou et al. "Role of crystallographic orientation on intragranular void growth in polycrystalline FCC materials,. In: International Journal of Plasticity 147 (2021), p.103104.
DOI: 10.1016/j.ijplas.2019.06.001
Google Scholar
[7]
J. Mayeur and D. McDowell. A three-dimensional crystal plasticity model for duplex Ti- 6Al-4V,. In: International journal of plasticity 23.9 (2007), pp.1457-1485.
DOI: 10.1016/j.ijplas.2006.11.006
Google Scholar
[8]
A. Ramazani et al. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach,. In: Materials Science and Engineering: A 560 (2013), pp.129-139.
DOI: 10.1016/j.msea.2012.09.046
Google Scholar
[9]
C. Thomser. "Modelling of the mechanical properties of dual phase steels based on microstructure.
Google Scholar
[10]
F. Qayyum et al. Effect of 3D representative volume element (RVE) thickness on stress and strain partitioning in crystal plasticity simulations of multi-phase materials,. In: Crystals 10.10 (2020), p.944.
DOI: 10.3390/cryst10100944
Google Scholar
[11]
C. H. Rycroft. A three-dimensional Voronoi cell library in C++. Tech. rep. LBNL-1432E. Lawrence Berkeley National Laboratory, Feb. (2009).
Google Scholar
[12]
E. Asik, E. Perdahcioglu, and T. van den Boogaard. An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels,. English. In: Materials 13.7 (Apr. 2020).
DOI: 10.3390/ma13071795
Google Scholar
[13]
J. Mandel. Généralisation de la théorie de plasticité de WT Koiter,. In: International Journal of Solids and structures 1.3 (1965), pp.273-295.
DOI: 10.1016/0020-7683(65)90034-x
Google Scholar
[14]
J. R. Rice. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity,. In: Journal of the Mechanics and Physics of Solids 19.6 (1971), pp.433-455.
DOI: 10.1016/0022-5096(71)90010-x
Google Scholar
[15]
G. I. Taylor. The mechanism of plastic deformation of crystals. Part I.-Theoretical,. In: Proc. R. Soc. Lond. A 145.855 (1934), pp.362-387.
DOI: 10.1098/rspa.1934.0106
Google Scholar
[16]
M. Becker. Incompatibility and instability based size effects in crystals and composites at finite elastoplastic strains,. PhD thesis. Institut für Mechanik (Bauwesen), Lehrstuhl I, (2006).
Google Scholar
[17]
S. P. Lloyd. Least Square Quantization in PCM,. In: IEEE transcation o information theory IT-28.2 (Mar. 1982), pp.129-137.
DOI: 10.1109/tit.1982.1056489
Google Scholar
[18]
V. Kouznetsova, W. Brekelmans, and F. Baaijens. An approach to micro-macro modeling of heterogeneous materials,. In: Computational mechanics 27.1 (2001), pp.37-48.
DOI: 10.1007/s004660000212
Google Scholar