[1]
S. Vaidya, P. Ambad, and S. Bhosle. Industry 4.0 - A Glimpse,. In: Procedia Manufacturing 20 (2018). 2nd International Conference on Materials, Manufacturing and Design Engineering (iCMMD2017), 11-12 December 2017, MIT Aurangabad, Maharashtra, INDIA, pp.233-238.
DOI: 10.1016/j.promfg.2018.02.034
Google Scholar
[2]
H. Hagenah et al. 4.0 in metal forming - questions and challenges,. In: Procedia CIRP 79 (2019). 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18- 20 July 2018, Gulf of Naples, Italy, pp.649-654.
DOI: 10.1016/j.procir.2019.02.055
Google Scholar
[3]
J. Allwood et al. Closed-loop control of product properties in metal forming,. In: CIRP Annals 65.2 (2016), pp.573-596.
DOI: 10.1016/j.cirp.2016.06.002
Google Scholar
[4]
J. Heingärtner et al. Acquisition of material properties in production for sheet metal forming processes". In: AIP Conference Proceedings 1567.1 (2013), pp.671-674. Key Engineering Materials Vol. 925 1827[5] F. J. Alamos, J. C. Gu, and H. Kim. "Evaluating the Reliability of a Nondestructive Evaluation (NDE) Tool to Measure the Incoming Sheet Mechanical Properties,. In: Forming the Future. Ed. by G. Daehn et al. Cham: Springer International Publishing, 2021, pp.2573-2584.
DOI: 10.1007/978-3-030-75381-8_212
Google Scholar
[6]
P. Fischer et al. Experiences with inline feedback control and data acquisition in deep drawing,. In: Procedia Manufacturing 15 (2018). Proceedings of the 17th International Conference on Metal Forming, 2018, Toyohashi, Japan, pp.949-954.
DOI: 10.1016/j.promfg.2018.07.401
Google Scholar
[7]
H. Yin and L. Sun. Effective magnetic permeability of composites containing chain-structured particles,. In: Acta Materialia 54.9 (2006), pp.2317-2323.
DOI: 10.1016/j.actamat.2006.01.007
Google Scholar
[8]
W. Yin et al. Measurement of Permeability and Ferrite/austenite Phase Fraction Using a Multifrequency Electromagnetic Sensor,. In: 2007 IEEE Instrumentation Measurement Technology Conference IMTC 2007. 2007, pp.1-4.
DOI: 10.1109/imtc.2007.379260
Google Scholar
[9]
W. Yin et al. Exploring the relationship between ferrite fraction and morphology and the electromagnetic properties of steel,. In: Journal of Materials Science 42-16 (2017), pp.6854-6861.
DOI: 10.1007/s10853-006-1327-6
Google Scholar
[10]
L. Zhou et al. Quantification of the phase fraction in steel using an electromagnetic sensor,. In: NDT & E International 67 (2014), pp.31-35.
Google Scholar
[11]
X. Hao et al. Modelling the electromagnetic response of two-phase steel microstructures,. In: NDT & E International 43.4 (2010), pp.305-315.
DOI: 10.1016/j.ndteint.2010.01.006
Google Scholar
[12]
R. Haldane et al. Multi-frequency electromagnetic sensor measurement of ferrite/austenite phase fraction-Experiment and theory,. In: Scripta Materialia 54.10 (2006), pp.1761-1765.
DOI: 10.1016/j.scriptamat.2006.01.041
Google Scholar
[13]
J. Heingärtner, M. Born, and P. Hora. Online Acquisition of Mechanical Material Properties of Sheet Metal for the Prediction of Product Quality by Eddy Current,. In: 10th European Conference and Exhibition on Non-destructive Testing. (2010).
Google Scholar
[14]
R. Hilzinger and W. Rodewald. Magnetic Materials Fundamentals, Products, Properties, Applications. Publicis Publishing, Erlangen, (2013).
Google Scholar
[15]
E. Garboczi. Finite Element and Finite Difference Programs for Computing the Linear Electric and Elastic Properties of Digital Images of Random Materials. en. 1998-12-01 (1998).
DOI: 10.6028/nist.ir.6269
Google Scholar
[16]
G. Chatzigeorgiou, A. Javili, and P. Steinmann. Unified magnetomechanical homogenization framework with application to magnetorheological elastomers,. In: Mathematics and Mechanics of Solids 19.2 (2014), pp.193-211.
DOI: 10.1177/1081286512458109
Google Scholar
[17]
A. Javili, G. Chatzigeorgiou, and P. Steinmann. Computational homogenization in magnetomechanics,. In: International Journal of Solids and Structures 50.25 (2013), pp.4197-4216.
DOI: 10.1016/j.ijsolstr.2013.08.024
Google Scholar
[18]
P. Karimi et al. Electrostatic and magnetostatic properties of random materials,. In: Phys. Rev. E 99 (2 Feb. 2019), p.022120.
Google Scholar
[19]
J. C. M. Garnett and J. Larmor. XII. Colours in metal glasses and in metallic films,. In: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 203.359-371 (1904), pp.385-420.
DOI: 10.1098/rsta.1904.0024
Google Scholar
[20]
D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,. In: Annalen der Physik 416.7 (1935), pp.636-664.
DOI: 10.1002/andp.19354160705
Google Scholar
[21]
D. Lukkassen, L.-E. Persson, and P. Wall. Some engineering and mathematical aspects on the homogenization method,. In: Composites Engineering 5.5 (1995), pp.519-531.
DOI: 10.1016/0961-9526(95)00025-i
Google Scholar
[22]
B. Eidel and A. Fischer. The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method,. In: Computer Methods in Applied Mechanics and Engineering 329 (2018), pp.332-368.
DOI: 10.1016/j.cma.2017.10.001
Google Scholar
[23]
J. Fish. Practical Multiscaling. John Wiley and Sons, Chichester, (2014).
Google Scholar
[24]
C. Soyarslan, M. Pradas, and S. Bargmann. Effective elastic properties of 3D stochastic bicontinuous composites,. In: Mechanics of Materials 137 (2019), p.103098.
DOI: 10.1016/j.mechmat.2019.103098
Google Scholar
[25]
L. H. Ma, Q. S. Rolfe B. F.and Yang, and C. H. Yang. A New Solution Method for Homogenization of Effective Properties of Electromagnetic Honeycombs,. In: Key Engineering Materials 443 (2010), pp.551-556. 1828 Achievements and Trends Material Forming[26] J. C. Maxwell. A Treatise on Electricity and Magnetism. Oxford University Press, 1783.
DOI: 10.4028/www.scientific.net/kem.443.551
Google Scholar
[27]
SIMULIA. ABAQUS/Standard User's Manual, Version 2019. English. United States: Dassault Systèmes Simulia Corp, (2009).
Google Scholar
[28]
L. Zhou. Non-destructive Characterisation of Steel Microstructures Using Electromagnetic Sensors,. PhD thesis. University of Birmingham, (2014).
Google Scholar
[29]
J. Schindelin et al. Fiji: an open-source platform for biological-image analysis,. In: Nature Methods 9 (7 2012), pp.676-682.
Google Scholar
[30]
T. W. Ridler and S. Calvard. Picture Thresholding Using an Iterative Selection Method,. In: IEEE Transactions on Systems, Man, and Cybernetics 8.8 (1978), pp.630-632. Key Engineering Materials Vol. 925 1829.
DOI: 10.1109/tsmc.1978.4310039
Google Scholar