Estimation of the Effective Magnetic Properties of Two-Phase Steels

Article Preview

Abstract:

We investigate the predictive performance of specific analytical and numerical methods to determine the effective magnetic properties of two-phase steels at the macroscale. We utilize various mixture rules reported in the literature for the former, some of which correspond to rigorous bounds, e.g., Voigt (arithmetic) and Reuss (harmonic) averages. For the latter, we employ asymptotic homogenization together with the finite element method (FEM) and periodic boundary conditions (PBC). The voxel-based discretization of the representative volume element is conducted with digital image processing on the existing micrographs of DP600-grade steel. We show that unlike the considered isotropic mixture rules, which use only the phase volume fraction as the statistical microstructural descriptor, finite element method-based first-order asymptotic homogenization allows prediction of both phase content and directional dependence in the magnetic permeability by permitting an accurate consideration of the underlying phase geometry.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] S. Vaidya, P. Ambad, and S. Bhosle. Industry 4.0 - A Glimpse,. In: Procedia Manufacturing 20 (2018). 2nd International Conference on Materials, Manufacturing and Design Engineering (iCMMD2017), 11-12 December 2017, MIT Aurangabad, Maharashtra, INDIA, pp.233-238.

DOI: 10.1016/j.promfg.2018.02.034

Google Scholar

[2] H. Hagenah et al. 4.0 in metal forming - questions and challenges,. In: Procedia CIRP 79 (2019). 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18- 20 July 2018, Gulf of Naples, Italy, pp.649-654.

DOI: 10.1016/j.procir.2019.02.055

Google Scholar

[3] J. Allwood et al. Closed-loop control of product properties in metal forming,. In: CIRP Annals 65.2 (2016), pp.573-596.

DOI: 10.1016/j.cirp.2016.06.002

Google Scholar

[4] J. Heingärtner et al. Acquisition of material properties in production for sheet metal forming processes". In: AIP Conference Proceedings 1567.1 (2013), pp.671-674. Key Engineering Materials Vol. 925 1827[5] F. J. Alamos, J. C. Gu, and H. Kim. "Evaluating the Reliability of a Nondestructive Evaluation (NDE) Tool to Measure the Incoming Sheet Mechanical Properties,. In: Forming the Future. Ed. by G. Daehn et al. Cham: Springer International Publishing, 2021, pp.2573-2584.

DOI: 10.1007/978-3-030-75381-8_212

Google Scholar

[6] P. Fischer et al. Experiences with inline feedback control and data acquisition in deep drawing,. In: Procedia Manufacturing 15 (2018). Proceedings of the 17th International Conference on Metal Forming, 2018, Toyohashi, Japan, pp.949-954.

DOI: 10.1016/j.promfg.2018.07.401

Google Scholar

[7] H. Yin and L. Sun. Effective magnetic permeability of composites containing chain-structured particles,. In: Acta Materialia 54.9 (2006), pp.2317-2323.

DOI: 10.1016/j.actamat.2006.01.007

Google Scholar

[8] W. Yin et al. Measurement of Permeability and Ferrite/austenite Phase Fraction Using a Multifrequency Electromagnetic Sensor,. In: 2007 IEEE Instrumentation Measurement Technology Conference IMTC 2007. 2007, pp.1-4.

DOI: 10.1109/imtc.2007.379260

Google Scholar

[9] W. Yin et al. Exploring the relationship between ferrite fraction and morphology and the electromagnetic properties of steel,. In: Journal of Materials Science 42-16 (2017), pp.6854-6861.

DOI: 10.1007/s10853-006-1327-6

Google Scholar

[10] L. Zhou et al. Quantification of the phase fraction in steel using an electromagnetic sensor,. In: NDT & E International 67 (2014), pp.31-35.

Google Scholar

[11] X. Hao et al. Modelling the electromagnetic response of two-phase steel microstructures,. In: NDT & E International 43.4 (2010), pp.305-315.

DOI: 10.1016/j.ndteint.2010.01.006

Google Scholar

[12] R. Haldane et al. Multi-frequency electromagnetic sensor measurement of ferrite/austenite phase fraction-Experiment and theory,. In: Scripta Materialia 54.10 (2006), pp.1761-1765.

DOI: 10.1016/j.scriptamat.2006.01.041

Google Scholar

[13] J. Heingärtner, M. Born, and P. Hora. Online Acquisition of Mechanical Material Properties of Sheet Metal for the Prediction of Product Quality by Eddy Current,. In: 10th European Conference and Exhibition on Non-destructive Testing. (2010).

Google Scholar

[14] R. Hilzinger and W. Rodewald. Magnetic Materials Fundamentals, Products, Properties, Applications. Publicis Publishing, Erlangen, (2013).

Google Scholar

[15] E. Garboczi. Finite Element and Finite Difference Programs for Computing the Linear Electric and Elastic Properties of Digital Images of Random Materials. en. 1998-12-01 (1998).

DOI: 10.6028/nist.ir.6269

Google Scholar

[16] G. Chatzigeorgiou, A. Javili, and P. Steinmann. Unified magnetomechanical homogenization framework with application to magnetorheological elastomers,. In: Mathematics and Mechanics of Solids 19.2 (2014), pp.193-211.

DOI: 10.1177/1081286512458109

Google Scholar

[17] A. Javili, G. Chatzigeorgiou, and P. Steinmann. Computational homogenization in magnetomechanics,. In: International Journal of Solids and Structures 50.25 (2013), pp.4197-4216.

DOI: 10.1016/j.ijsolstr.2013.08.024

Google Scholar

[18] P. Karimi et al. Electrostatic and magnetostatic properties of random materials,. In: Phys. Rev. E 99 (2 Feb. 2019), p.022120.

Google Scholar

[19] J. C. M. Garnett and J. Larmor. XII. Colours in metal glasses and in metallic films,. In: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 203.359-371 (1904), pp.385-420.

DOI: 10.1098/rsta.1904.0024

Google Scholar

[20] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,. In: Annalen der Physik 416.7 (1935), pp.636-664.

DOI: 10.1002/andp.19354160705

Google Scholar

[21] D. Lukkassen, L.-E. Persson, and P. Wall. Some engineering and mathematical aspects on the homogenization method,. In: Composites Engineering 5.5 (1995), pp.519-531.

DOI: 10.1016/0961-9526(95)00025-i

Google Scholar

[22] B. Eidel and A. Fischer. The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method,. In: Computer Methods in Applied Mechanics and Engineering 329 (2018), pp.332-368.

DOI: 10.1016/j.cma.2017.10.001

Google Scholar

[23] J. Fish. Practical Multiscaling. John Wiley and Sons, Chichester, (2014).

Google Scholar

[24] C. Soyarslan, M. Pradas, and S. Bargmann. Effective elastic properties of 3D stochastic bicontinuous composites,. In: Mechanics of Materials 137 (2019), p.103098.

DOI: 10.1016/j.mechmat.2019.103098

Google Scholar

[25] L. H. Ma, Q. S. Rolfe B. F.and Yang, and C. H. Yang. A New Solution Method for Homogenization of Effective Properties of Electromagnetic Honeycombs,. In: Key Engineering Materials 443 (2010), pp.551-556. 1828 Achievements and Trends Material Forming[26] J. C. Maxwell. A Treatise on Electricity and Magnetism. Oxford University Press, 1783.

DOI: 10.4028/www.scientific.net/kem.443.551

Google Scholar

[27] SIMULIA. ABAQUS/Standard User's Manual, Version 2019. English. United States: Dassault Systèmes Simulia Corp, (2009).

Google Scholar

[28] L. Zhou. Non-destructive Characterisation of Steel Microstructures Using Electromagnetic Sensors,. PhD thesis. University of Birmingham, (2014).

Google Scholar

[29] J. Schindelin et al. Fiji: an open-source platform for biological-image analysis,. In: Nature Methods 9 (7 2012), pp.676-682.

Google Scholar

[30] T. W. Ridler and S. Calvard. Picture Thresholding Using an Iterative Selection Method,. In: IEEE Transactions on Systems, Man, and Cybernetics 8.8 (1978), pp.630-632. Key Engineering Materials Vol. 925 1829.

DOI: 10.1109/tsmc.1978.4310039

Google Scholar