Influence of Plastic Deformation on the Hydrogen Embrittlement Susceptibility of Dual Phase Steels

Article Preview

Abstract:

The susceptibility of advanced high-strength steels (AHSS) to hydrogen embrittlement (HE) limits the broad utilization of these materials for body-in-white (BIW) components. The considerable decrease of both ductility and toughness due to local hydrogen accumulation inside of formed components may cause unpredictable time-delayed failure. In particular deep-drawn and punched AHSS components are prone to hydrogen absorption. This work investigates the influence of plastic deformation on hydrogen absorption of dual phase (DP) steels. For that purpose, tensile samples were machined out of three commercial 1.2 mm-thick DP sheets with ultimate tensile strengths of 626 MPa, 826 MPa and 1096 MPa. Samples were uniaxially pre-strained to 2 %, 5 %, 10 %, 15 % and 20 %. After pre-straining the samples were electrochemically charged with hydrogen, and the actual hydrogen contents were determined using a thermal desorption analyser (TDA). Before and after charging, the hardness of the samples was measured and the uniaxial quasi-static tensile properties were determined. In order to quantify the influence of plastic deformation on HE, slow strain rate tests (SSRT) were performed. The results of the tests were correlated with the fraction of martensite determined for each of the three steels.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] C. Bergmann, Hydrogen embrittlement resistance of advanced high strength steel grades in automotive applications, Ruhr-Universität Bochum, (2020).

Google Scholar

[2] A. Drexler, C. Bergmann, G. Manke, V. Kokotin, K. Mraczek, M. Pohl, W. Ecker, On the local evaluation of the hydrogen susceptibility of cold-formed and heat treated advanced high strength steel (AHSS) sheets, Mater. Sci. Eng. A. 800 (2021) 140276. https://doi.org/10.1016/j.msea.2020.140276.

DOI: 10.1016/j.msea.2020.140276

Google Scholar

[3] A. Drexler, C. Bergmann, G. Manke, V. Kokotin, K. Mraczek, S. Leitner, M. Pohl, W. Ecker, Local hydrogen accumulation after cold forming and heat treatment in punched advanced high strength steel sheets, J. Alloys Compd. 856 (2021) 158226. https://doi.org/10.1016/j.jallcom. 2020.158226.

DOI: 10.1016/j.jallcom.2020.158226

Google Scholar

[4] A. Drexler, W. Ecker, N. Winzer, K. Mraczek, V. Kokotin, G. Manke, C. Bergmann, A step towards numerical evaluation of the local hydrogen susceptibility of punched and cold-formed advanced high strength steel (AHSS) sheets, in: L. Duprez (Ed.), SteelyHydrogen, Ocas, 2018: p. A02. http://steelyhydrogen2018proc.be/articles/pdf/2.

DOI: 10.1016/j.msea.2020.140276

Google Scholar

[5] A. Drexler, W. Siegl, W. Ecker, M. Tkadletz, G. Klösch, H. Schnideritsch, G. Mori, J. Svoboda, F.D. Fischer, Cycled hydrogen permeation through Armco iron – A joint experimental and modeling approach, Corros. Sci. 176 (2020) 109017. https://doi.org/10.1016/j.corsci.2020.109017.

DOI: 10.1016/j.corsci.2020.109017

Google Scholar

[6] W. Siegl, W. Ecker, J. Klarner, G. Kloesch, G. Mori, A. Drexler, G. Winter, H. Schnideritsch, Hydrogen trapping in heat treated and deformed Armco iron, in: NACE - Int. Corros. Conf. Ser., 2019: p.1–12.

Google Scholar

[7] B. Ozdirik, T. Suter, U. Hans, T. Depover, K. Verbeken, P. Schmutz, L.P.H. Jeurgens, H. Terryn, I. De Graeve, Study of the hydrogen uptake in deformed steel using the microcapillary cell technique, Corros. Sci. 155 (2019) 55–66. https://doi.org/10.1016/j.corsci.2019.04.029.

DOI: 10.1016/j.corsci.2019.04.029

Google Scholar

[8] A. Drexler, S. He, R. Pippan, L. Romaner, V.I. Razumovskiy, W. Ecker, Hydrogen segregation near a crack tip in nickel, Scr. Mater. 194 (2021) 113697. https://doi.org/10.1016/j.scriptamat.2020.113697.

DOI: 10.1016/j.scriptamat.2020.113697

Google Scholar

[9] V.A. Polyanskiy, A.K. Belyaev, E.L. Alekseeva, A.M. Polyanskiy, D.A. Tretyakov, Y.A. Yakovlev, Phenomenon of skin effect in metals due to hydrogen absorption, Contin. Mech. Thermodyn. 31 (2019) 1961–1975. https://doi.org/10.1007/s00161-019-00839-2.

DOI: 10.1007/s00161-019-00839-2

Google Scholar

[10] V.A. Polyanskiy, A.K. Belyaev, A.A. Chevrychkina, E.A. Varshavchik, Y. u. A. Yakovlev, Impact of skin effect of hydrogen charging on the Choo-Lee plot for cylindrical samples, Int. J. Hydrogen Energy. 46 (2021) 6979–6991. https://doi.org/10.1016/j.ijhydene.2020.11.192.

DOI: 10.1016/j.ijhydene.2020.11.192

Google Scholar

[11] M. Nagumo, Fundamentals of Hydrogen Embrittlement, Springer Singapore, Singapore, 2016. https://doi.org/10.1007/978-981-10-0161-1.

Google Scholar

[12] Q. Liu, J. Venezuela, M. Zhang, Q. Zhou, A. Atrens, Hydrogen trapping in some advanced high strength steels, Corros. Sci. 111 (2016) 770–785. https://doi.org/10.1016/j.corsci.2016.05.046.

DOI: 10.1016/j.corsci.2016.05.046

Google Scholar

[13] J. Rehrl, K. Mraczek, A. Pichler, E. Werner, Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests, Mater. Sci. Eng. A. 590 (2014) 360–367. https://doi.org/10.1016/j.msea.2013.10.044.

DOI: 10.1016/j.msea.2013.10.044

Google Scholar

[14] R.G. Davies, Influence of martensite content on the hydrogen embrittlement of dual-phase steels, Scr. Metall. 17 (1983) 889–892. https://doi.org/10.1016/0036-9748(83)90255-7.

DOI: 10.1016/0036-9748(83)90255-7

Google Scholar

[15] A. Drexler, B. Helic, Z. Silvayeh, K. Mraczek, C. Sommitsch, J. Domitner, The role of hydrogen diffusion, trapping and desorption in dual phase steels, J. Mater. Sci. (2022) 1–30. https://doi.org/10.1007/s10853-021-06830-0.

DOI: 10.1007/s10853-021-06830-0

Google Scholar

[16] J. Hu, Y. Wang, L. Yu, Y. Zou, Y. Wang, An Investigation of a Combined Thiourea and Hexamethylenetetramine as Inhibitors for Corrosion of N80 in 15% HCl Solution: Electrochemical Experiments and Quantum Chemical Calculation, Int. J. Corros. 2015 (2015). https://doi.org/10.1155/2015/548031.

DOI: 10.1155/2015/548031

Google Scholar

[17] A. Drexler, L. Vandewalle, T. Depover, K. Verbeken, J. Domitner, Critical verification of the Kissinger theory to evaluate thermal desorption spectra, Int. J. Hydrogen Energy. 46 (2021) 39590–39606. https://doi.org/10.1016/j.ijhydene.2021.09.171.

DOI: 10.1016/j.ijhydene.2021.09.171

Google Scholar

[18] R. Kirchheim, Bulk Diffusion-Controlled Thermal Desorption Spectroscopy with Examples for Hydrogen in Iron, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47 (2016) 672–696. https://doi.org/10.1007/s11661-015-3236-2.

DOI: 10.1007/s11661-015-3236-2

Google Scholar

[19] A. Drexler, T. Depover, K. Verbeken, W. Ecker, Model-based interpretation of thermal desorption spectra of Fe-C-Ti alloys, J. Alloys Compd. 789 (2019) 647–657. https://doi.org/10.1016/j.jallcom.2019.03.102.

DOI: 10.1016/j.jallcom.2019.03.102

Google Scholar

[20] A. Drexler, T. Depover, S. Leitner, K. Verbeken, W. Ecker, Microstructural based hydrogen diffusion and trapping models applied to Fe–C X alloys, J. Alloys Compd. 826 (2020) 154057. https://doi.org/10.1016/j.jallcom.2020.154057.

DOI: 10.1016/j.jallcom.2020.154057

Google Scholar

[21] T. Depover, D. Pérez Escobar, E. Wallaert, Z. Zermout, K. Verbeken, Effect of hydrogen charging on the mechanical properties of advanced high strength steels, Int. J. Hydrogen Energy. 39 (2014) 4647–4656. https://doi.org/10.1016/j.ijhydene.2013.12.190.

DOI: 10.1016/j.ijhydene.2013.12.190

Google Scholar

[22] T. Schaffner, A. Hartmaier, V. Kokotin, M. Pohl, Analysis of hydrogen diffusion and trapping in ultra-high strength steel grades, J. Alloys Compd. 746 (2018) 557–566. https://doi.org/10.1016/j.jallcom.2018.02.264.

DOI: 10.1016/j.jallcom.2018.02.264

Google Scholar

[23] Z. Wang, J. Liu, F. Huang, Y. Bi, S. Zhang, Hydrogen Diffusion and Its Effect on Hydrogen Embrittlement in DP Steels With Different Martensite Content, Front. Mater. 7 (2020) 359–364. https://doi.org/10.3389/fmats.2020.620000.

DOI: 10.3389/fmats.2020.620000

Google Scholar

[24] M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater. 70 (2014) 174–187. https://doi.org/10.1016/j.actamat.2014.01.048.

DOI: 10.1016/j.actamat.2014.01.048

Google Scholar

[25] Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, A. Atrens, Hydrogen Concentration in Dual-Phase (DP) and Quenched and Partitioned (Q&P) Advanced High-Strength Steels (AHSS) under Simulated Service Conditions Compared with Cathodic Charging Conditions, Adv. Eng. Mater. 18 (2016) 1588–1599. https://doi.org/10.1002/adem.201600217.

DOI: 10.1002/adem.201600217

Google Scholar

[26] A. Drexler, J. Domitner, C. Sommitsch, Modeling of Hydrogen Diffusion in Slow Strain Rate (SSR) Testing of Notched Samples, in: P. V.A., B. A.K. (Eds.), Adv. Hydrog. Embrittlement Study, 143rd ed., Springer, 2021: p.87–111. https://doi.org/10.1007/978-3-030-66948-5_6.

DOI: 10.1007/978-3-030-66948-5_6

Google Scholar

[27] T. Depover, K. Verbeken, Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys, Mater. Sci. Eng. A. 675 (2016) 299–313. https://doi.org/10.1016/j.msea.2016.08.053.

DOI: 10.1016/j.msea.2016.08.053

Google Scholar

[28] A. Drexler, B. Oberwinkler, S. Primig, C. Turk, E. Povoden-Karadeniz, A. Heinemann, W. Ecker, M. Stockinger, Experimental and numerical investigations of the γ" and γ' precipitation kinetics in Alloy 718, Mater. Sci. Eng. A. 723 (2018) 314–323. https://doi.org/10.1016/j.msea.2018.03.013.

DOI: 10.1016/j.msea.2018.03.013

Google Scholar

[29] A. Drexler, H.P. Gänser, W. Ecker, B. Oberwinkler, A. Fischersworring-Bunk, Computationally efficient models for the forced air cooling of turbine disks, in: Therm. Process Model. - Proc. from 5th Int. Conf. Therm. Process Model. Comput. Simulation, ICTPMCS 2014, 2014: p.223–231.

Google Scholar

[30] A. Drexler, A. Fischersworring-Bunk, B. Oberwinkler, W. Ecker, H.-P. Gänser, A microstructural based creep model applied to alloy 718, Int. J. Plast. 105 (2018) 62–73. https://doi.org/10.1016/j.ijplas.2017.11.003.

DOI: 10.1016/j.ijplas.2017.11.003

Google Scholar

[31] A. Drexler, W. Ecker, R. Hessert, B. Oberwinkler, H.-P. Gänser, J. Keckes, M. Hofmann, A. Fischersworring-Bunk, Finite element modeling of the residual stress evolution in forged and direct-aged alloy 718 turbine disks during manufacturing and its experimental validation, in: AIP Conf. Proc., 2017: p.070001. https://doi.org/10.1063/1.5008076.

DOI: 10.1063/1.5008076

Google Scholar

[32] T. Depover, K. Verbeken, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys, Corros. Sci. 112 (2016) 308–326. https://doi.org/10.1016/j.corsci.2016.07.013.

DOI: 10.1016/j.corsci.2016.07.013

Google Scholar

[33] E. Wallaert, T. Depover, M. Arafin, K. Verbeken, Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates, Metall. Mater. Trans. A. 45 (2014) 2412–2420. https://doi.org/10.1007/s11661-013-2181-1.

DOI: 10.1007/s11661-013-2181-1

Google Scholar

[34] H.K.D.H. Bhadeshia, Prevention of Hydrogen Embrittlement in Steels, ISIJ Int. 56 (2016) 24–36. https://doi.org/10.2355/isijinternational.ISIJINT-2015-430.

DOI: 10.2355/isijinternational.isijint-2015-430

Google Scholar

[35] T. Depover, T. Hajilou, D. Wan, D. Wang, A. Barnoush, K. Verbeken, Assessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steel, Mater. Sci. Eng. A. 754 (2019) 613–621. https://doi.org/10.1016/j.msea.2019.03.097.

DOI: 10.1016/j.msea.2019.03.097

Google Scholar

[36] A. Drexler, S. He, V. Razumovskiy, L. Romaner, W. Ecker, R. Pippan, Verification of the generalised chemical potential for stress-driven hydrogen diffusion in nickel, Philos. Mag. Lett. 100 (2020) 513–523. https://doi.org/10.1080/09500839.2020.1808253.

DOI: 10.1080/09500839.2020.1808253

Google Scholar

[37] Y. Tateyama, T. Ohno, Atomic-scale effects of hydrogen in iron toward hydrogen embrittlement: Ab-initio study, ISIJ Int. 43 (2003) 573–578. https://doi.org/10.2355/isijinternational.43.573.

DOI: 10.2355/isijinternational.43.573

Google Scholar

[38] J. Svoboda, G. Mori, A. Prethaler, F.D. Fischer, Determination of trapping parameters and the chemical diffusion coefficient from hydrogen permeation experiments, Corros. Sci. 82 (2014) 93–100. https://doi.org/10.1016/j.corsci.2014.01.002.

DOI: 10.1016/j.corsci.2014.01.002

Google Scholar

[39] D. Rudomilova, T. Prošek, P. Salvetr, A. Knaislová, P. Novák, R. Kodým, G. Schimo-Aichhorn, A. Muhr, H. Duchaczek, G. Luckeneder, The effect of microstructure on hydrogen permeability of high strength steels, Mater. Corros. 71 (2020) 909–917. https://doi.org/10.1002/maco.201911357.

DOI: 10.1002/maco.201911357

Google Scholar

[40] E. Van den Eeckhout, I. De Baere, T. Depover, K. Verbeken, The effect of a constant tensile load on the hydrogen diffusivity in dual phase steel by electrochemical permeation experiments, Mater. Sci. Eng. A. 773 (2020) 138872. https://doi.org/10.1016/j.msea. 2019.138872.

DOI: 10.1016/j.msea.2019.138872

Google Scholar

[41] Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, A. Atrens, Hydrogen influence on some advanced high-strength steels, Corros. Sci. 125 (2017) 114–138. https://doi.org/10.1016/j.corsci. 2017.06.012.

DOI: 10.1016/j.corsci.2017.06.012

Google Scholar

[42] J.Y. Lee, W.Y. Choo, Thermal analysis of trapped hydrogen in pure iron, Metall. Trans. A. 13A (1982) 135–140.

Google Scholar

[43] M. Nagumo, Hydrogen related failure of steels - A new aspect, Mater. Sci. Technol. 20 (2004) 940–950. https://doi.org/10.1179/026708304225019687.

Google Scholar

[44] K. Takai, H. Shoda, H. Suzuki, M. Nagumo, Lattice defects dominating hydrogen-related failure of metals, Acta Mater. 56 (2008) 5158–5167. https://doi.org/10.1016/j.actamat. 2008.06.031.

DOI: 10.1016/j.actamat.2008.06.031

Google Scholar