[1]
C. Bergmann, Hydrogen embrittlement resistance of advanced high strength steel grades in automotive applications, Ruhr-Universität Bochum, (2020).
Google Scholar
[2]
A. Drexler, C. Bergmann, G. Manke, V. Kokotin, K. Mraczek, M. Pohl, W. Ecker, On the local evaluation of the hydrogen susceptibility of cold-formed and heat treated advanced high strength steel (AHSS) sheets, Mater. Sci. Eng. A. 800 (2021) 140276. https://doi.org/10.1016/j.msea.2020.140276.
DOI: 10.1016/j.msea.2020.140276
Google Scholar
[3]
A. Drexler, C. Bergmann, G. Manke, V. Kokotin, K. Mraczek, S. Leitner, M. Pohl, W. Ecker, Local hydrogen accumulation after cold forming and heat treatment in punched advanced high strength steel sheets, J. Alloys Compd. 856 (2021) 158226. https://doi.org/10.1016/j.jallcom. 2020.158226.
DOI: 10.1016/j.jallcom.2020.158226
Google Scholar
[4]
A. Drexler, W. Ecker, N. Winzer, K. Mraczek, V. Kokotin, G. Manke, C. Bergmann, A step towards numerical evaluation of the local hydrogen susceptibility of punched and cold-formed advanced high strength steel (AHSS) sheets, in: L. Duprez (Ed.), SteelyHydrogen, Ocas, 2018: p. A02. http://steelyhydrogen2018proc.be/articles/pdf/2.
DOI: 10.1016/j.msea.2020.140276
Google Scholar
[5]
A. Drexler, W. Siegl, W. Ecker, M. Tkadletz, G. Klösch, H. Schnideritsch, G. Mori, J. Svoboda, F.D. Fischer, Cycled hydrogen permeation through Armco iron – A joint experimental and modeling approach, Corros. Sci. 176 (2020) 109017. https://doi.org/10.1016/j.corsci.2020.109017.
DOI: 10.1016/j.corsci.2020.109017
Google Scholar
[6]
W. Siegl, W. Ecker, J. Klarner, G. Kloesch, G. Mori, A. Drexler, G. Winter, H. Schnideritsch, Hydrogen trapping in heat treated and deformed Armco iron, in: NACE - Int. Corros. Conf. Ser., 2019: p.1–12.
Google Scholar
[7]
B. Ozdirik, T. Suter, U. Hans, T. Depover, K. Verbeken, P. Schmutz, L.P.H. Jeurgens, H. Terryn, I. De Graeve, Study of the hydrogen uptake in deformed steel using the microcapillary cell technique, Corros. Sci. 155 (2019) 55–66. https://doi.org/10.1016/j.corsci.2019.04.029.
DOI: 10.1016/j.corsci.2019.04.029
Google Scholar
[8]
A. Drexler, S. He, R. Pippan, L. Romaner, V.I. Razumovskiy, W. Ecker, Hydrogen segregation near a crack tip in nickel, Scr. Mater. 194 (2021) 113697. https://doi.org/10.1016/j.scriptamat.2020.113697.
DOI: 10.1016/j.scriptamat.2020.113697
Google Scholar
[9]
V.A. Polyanskiy, A.K. Belyaev, E.L. Alekseeva, A.M. Polyanskiy, D.A. Tretyakov, Y.A. Yakovlev, Phenomenon of skin effect in metals due to hydrogen absorption, Contin. Mech. Thermodyn. 31 (2019) 1961–1975. https://doi.org/10.1007/s00161-019-00839-2.
DOI: 10.1007/s00161-019-00839-2
Google Scholar
[10]
V.A. Polyanskiy, A.K. Belyaev, A.A. Chevrychkina, E.A. Varshavchik, Y. u. A. Yakovlev, Impact of skin effect of hydrogen charging on the Choo-Lee plot for cylindrical samples, Int. J. Hydrogen Energy. 46 (2021) 6979–6991. https://doi.org/10.1016/j.ijhydene.2020.11.192.
DOI: 10.1016/j.ijhydene.2020.11.192
Google Scholar
[11]
M. Nagumo, Fundamentals of Hydrogen Embrittlement, Springer Singapore, Singapore, 2016. https://doi.org/10.1007/978-981-10-0161-1.
Google Scholar
[12]
Q. Liu, J. Venezuela, M. Zhang, Q. Zhou, A. Atrens, Hydrogen trapping in some advanced high strength steels, Corros. Sci. 111 (2016) 770–785. https://doi.org/10.1016/j.corsci.2016.05.046.
DOI: 10.1016/j.corsci.2016.05.046
Google Scholar
[13]
J. Rehrl, K. Mraczek, A. Pichler, E. Werner, Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests, Mater. Sci. Eng. A. 590 (2014) 360–367. https://doi.org/10.1016/j.msea.2013.10.044.
DOI: 10.1016/j.msea.2013.10.044
Google Scholar
[14]
R.G. Davies, Influence of martensite content on the hydrogen embrittlement of dual-phase steels, Scr. Metall. 17 (1983) 889–892. https://doi.org/10.1016/0036-9748(83)90255-7.
DOI: 10.1016/0036-9748(83)90255-7
Google Scholar
[15]
A. Drexler, B. Helic, Z. Silvayeh, K. Mraczek, C. Sommitsch, J. Domitner, The role of hydrogen diffusion, trapping and desorption in dual phase steels, J. Mater. Sci. (2022) 1–30. https://doi.org/10.1007/s10853-021-06830-0.
DOI: 10.1007/s10853-021-06830-0
Google Scholar
[16]
J. Hu, Y. Wang, L. Yu, Y. Zou, Y. Wang, An Investigation of a Combined Thiourea and Hexamethylenetetramine as Inhibitors for Corrosion of N80 in 15% HCl Solution: Electrochemical Experiments and Quantum Chemical Calculation, Int. J. Corros. 2015 (2015). https://doi.org/10.1155/2015/548031.
DOI: 10.1155/2015/548031
Google Scholar
[17]
A. Drexler, L. Vandewalle, T. Depover, K. Verbeken, J. Domitner, Critical verification of the Kissinger theory to evaluate thermal desorption spectra, Int. J. Hydrogen Energy. 46 (2021) 39590–39606. https://doi.org/10.1016/j.ijhydene.2021.09.171.
DOI: 10.1016/j.ijhydene.2021.09.171
Google Scholar
[18]
R. Kirchheim, Bulk Diffusion-Controlled Thermal Desorption Spectroscopy with Examples for Hydrogen in Iron, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47 (2016) 672–696. https://doi.org/10.1007/s11661-015-3236-2.
DOI: 10.1007/s11661-015-3236-2
Google Scholar
[19]
A. Drexler, T. Depover, K. Verbeken, W. Ecker, Model-based interpretation of thermal desorption spectra of Fe-C-Ti alloys, J. Alloys Compd. 789 (2019) 647–657. https://doi.org/10.1016/j.jallcom.2019.03.102.
DOI: 10.1016/j.jallcom.2019.03.102
Google Scholar
[20]
A. Drexler, T. Depover, S. Leitner, K. Verbeken, W. Ecker, Microstructural based hydrogen diffusion and trapping models applied to Fe–C X alloys, J. Alloys Compd. 826 (2020) 154057. https://doi.org/10.1016/j.jallcom.2020.154057.
DOI: 10.1016/j.jallcom.2020.154057
Google Scholar
[21]
T. Depover, D. Pérez Escobar, E. Wallaert, Z. Zermout, K. Verbeken, Effect of hydrogen charging on the mechanical properties of advanced high strength steels, Int. J. Hydrogen Energy. 39 (2014) 4647–4656. https://doi.org/10.1016/j.ijhydene.2013.12.190.
DOI: 10.1016/j.ijhydene.2013.12.190
Google Scholar
[22]
T. Schaffner, A. Hartmaier, V. Kokotin, M. Pohl, Analysis of hydrogen diffusion and trapping in ultra-high strength steel grades, J. Alloys Compd. 746 (2018) 557–566. https://doi.org/10.1016/j.jallcom.2018.02.264.
DOI: 10.1016/j.jallcom.2018.02.264
Google Scholar
[23]
Z. Wang, J. Liu, F. Huang, Y. Bi, S. Zhang, Hydrogen Diffusion and Its Effect on Hydrogen Embrittlement in DP Steels With Different Martensite Content, Front. Mater. 7 (2020) 359–364. https://doi.org/10.3389/fmats.2020.620000.
DOI: 10.3389/fmats.2020.620000
Google Scholar
[24]
M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater. 70 (2014) 174–187. https://doi.org/10.1016/j.actamat.2014.01.048.
DOI: 10.1016/j.actamat.2014.01.048
Google Scholar
[25]
Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, A. Atrens, Hydrogen Concentration in Dual-Phase (DP) and Quenched and Partitioned (Q&P) Advanced High-Strength Steels (AHSS) under Simulated Service Conditions Compared with Cathodic Charging Conditions, Adv. Eng. Mater. 18 (2016) 1588–1599. https://doi.org/10.1002/adem.201600217.
DOI: 10.1002/adem.201600217
Google Scholar
[26]
A. Drexler, J. Domitner, C. Sommitsch, Modeling of Hydrogen Diffusion in Slow Strain Rate (SSR) Testing of Notched Samples, in: P. V.A., B. A.K. (Eds.), Adv. Hydrog. Embrittlement Study, 143rd ed., Springer, 2021: p.87–111. https://doi.org/10.1007/978-3-030-66948-5_6.
DOI: 10.1007/978-3-030-66948-5_6
Google Scholar
[27]
T. Depover, K. Verbeken, Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys, Mater. Sci. Eng. A. 675 (2016) 299–313. https://doi.org/10.1016/j.msea.2016.08.053.
DOI: 10.1016/j.msea.2016.08.053
Google Scholar
[28]
A. Drexler, B. Oberwinkler, S. Primig, C. Turk, E. Povoden-Karadeniz, A. Heinemann, W. Ecker, M. Stockinger, Experimental and numerical investigations of the γ" and γ' precipitation kinetics in Alloy 718, Mater. Sci. Eng. A. 723 (2018) 314–323. https://doi.org/10.1016/j.msea.2018.03.013.
DOI: 10.1016/j.msea.2018.03.013
Google Scholar
[29]
A. Drexler, H.P. Gänser, W. Ecker, B. Oberwinkler, A. Fischersworring-Bunk, Computationally efficient models for the forced air cooling of turbine disks, in: Therm. Process Model. - Proc. from 5th Int. Conf. Therm. Process Model. Comput. Simulation, ICTPMCS 2014, 2014: p.223–231.
Google Scholar
[30]
A. Drexler, A. Fischersworring-Bunk, B. Oberwinkler, W. Ecker, H.-P. Gänser, A microstructural based creep model applied to alloy 718, Int. J. Plast. 105 (2018) 62–73. https://doi.org/10.1016/j.ijplas.2017.11.003.
DOI: 10.1016/j.ijplas.2017.11.003
Google Scholar
[31]
A. Drexler, W. Ecker, R. Hessert, B. Oberwinkler, H.-P. Gänser, J. Keckes, M. Hofmann, A. Fischersworring-Bunk, Finite element modeling of the residual stress evolution in forged and direct-aged alloy 718 turbine disks during manufacturing and its experimental validation, in: AIP Conf. Proc., 2017: p.070001. https://doi.org/10.1063/1.5008076.
DOI: 10.1063/1.5008076
Google Scholar
[32]
T. Depover, K. Verbeken, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys, Corros. Sci. 112 (2016) 308–326. https://doi.org/10.1016/j.corsci.2016.07.013.
DOI: 10.1016/j.corsci.2016.07.013
Google Scholar
[33]
E. Wallaert, T. Depover, M. Arafin, K. Verbeken, Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates, Metall. Mater. Trans. A. 45 (2014) 2412–2420. https://doi.org/10.1007/s11661-013-2181-1.
DOI: 10.1007/s11661-013-2181-1
Google Scholar
[34]
H.K.D.H. Bhadeshia, Prevention of Hydrogen Embrittlement in Steels, ISIJ Int. 56 (2016) 24–36. https://doi.org/10.2355/isijinternational.ISIJINT-2015-430.
DOI: 10.2355/isijinternational.isijint-2015-430
Google Scholar
[35]
T. Depover, T. Hajilou, D. Wan, D. Wang, A. Barnoush, K. Verbeken, Assessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steel, Mater. Sci. Eng. A. 754 (2019) 613–621. https://doi.org/10.1016/j.msea.2019.03.097.
DOI: 10.1016/j.msea.2019.03.097
Google Scholar
[36]
A. Drexler, S. He, V. Razumovskiy, L. Romaner, W. Ecker, R. Pippan, Verification of the generalised chemical potential for stress-driven hydrogen diffusion in nickel, Philos. Mag. Lett. 100 (2020) 513–523. https://doi.org/10.1080/09500839.2020.1808253.
DOI: 10.1080/09500839.2020.1808253
Google Scholar
[37]
Y. Tateyama, T. Ohno, Atomic-scale effects of hydrogen in iron toward hydrogen embrittlement: Ab-initio study, ISIJ Int. 43 (2003) 573–578. https://doi.org/10.2355/isijinternational.43.573.
DOI: 10.2355/isijinternational.43.573
Google Scholar
[38]
J. Svoboda, G. Mori, A. Prethaler, F.D. Fischer, Determination of trapping parameters and the chemical diffusion coefficient from hydrogen permeation experiments, Corros. Sci. 82 (2014) 93–100. https://doi.org/10.1016/j.corsci.2014.01.002.
DOI: 10.1016/j.corsci.2014.01.002
Google Scholar
[39]
D. Rudomilova, T. Prošek, P. Salvetr, A. Knaislová, P. Novák, R. Kodým, G. Schimo-Aichhorn, A. Muhr, H. Duchaczek, G. Luckeneder, The effect of microstructure on hydrogen permeability of high strength steels, Mater. Corros. 71 (2020) 909–917. https://doi.org/10.1002/maco.201911357.
DOI: 10.1002/maco.201911357
Google Scholar
[40]
E. Van den Eeckhout, I. De Baere, T. Depover, K. Verbeken, The effect of a constant tensile load on the hydrogen diffusivity in dual phase steel by electrochemical permeation experiments, Mater. Sci. Eng. A. 773 (2020) 138872. https://doi.org/10.1016/j.msea. 2019.138872.
DOI: 10.1016/j.msea.2019.138872
Google Scholar
[41]
Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, A. Atrens, Hydrogen influence on some advanced high-strength steels, Corros. Sci. 125 (2017) 114–138. https://doi.org/10.1016/j.corsci. 2017.06.012.
DOI: 10.1016/j.corsci.2017.06.012
Google Scholar
[42]
J.Y. Lee, W.Y. Choo, Thermal analysis of trapped hydrogen in pure iron, Metall. Trans. A. 13A (1982) 135–140.
Google Scholar
[43]
M. Nagumo, Hydrogen related failure of steels - A new aspect, Mater. Sci. Technol. 20 (2004) 940–950. https://doi.org/10.1179/026708304225019687.
Google Scholar
[44]
K. Takai, H. Shoda, H. Suzuki, M. Nagumo, Lattice defects dominating hydrogen-related failure of metals, Acta Mater. 56 (2008) 5158–5167. https://doi.org/10.1016/j.actamat. 2008.06.031.
DOI: 10.1016/j.actamat.2008.06.031
Google Scholar