[1]
Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges (2018) Composites Part B: Engineering, 143, pp.172-196.
DOI: 10.1016/j.compositesb.2018.02.012
Google Scholar
[2]
Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C.B., Wang, C.C.L., Shin, Y.C., Zhang, S., Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering (2015) CAD Computer Aided Design, 69, pp.65-89.
DOI: 10.1016/j.cad.2015.04.001
Google Scholar
[3]
Giorleo, L., Tegazzini, F., Sartore, L. 3D printing of gelatin/chitosan biodegradable hybrid hydrogel: Critical issues due to the crosslinking reaction, degradation phenomena and process parameters (2021) Bioprinting, 24, art. no. e00170.
DOI: 10.1016/j.bprint.2021.e00170
Google Scholar
[4]
Giorleo, L., Bonaventi, M., Casting of complex structures in aluminum using gypsum molds produced via binder jetting (2021) Rapid Prototyping Journal, 27 (11), pp.13-23,.
DOI: 10.1108/rpj-03-2020-0048
Google Scholar
[5]
Razavi, S.M.J., Avanzini, A., Cornacchia, G., Giorleo, L., Berto, F., Effect of heat treatment on fatigue behavior of as-built notched Co-Cr-Mo parts produced by Selective Laser Melting (2021) International Journal of Fatigue, 142, art. no. 105926,.
DOI: 10.1016/j.ijfatigue.2020.105926
Google Scholar
[6]
Tomasoni, D., Colosio, S., Giorleo, L., Ceretti, E., Design for additive manufacturing: Thermoforming mold optimization via conformal cooling channel technology (2020) Procedia Manufacturing, 47, pp.1117-1122.
DOI: 10.1016/j.promfg.2020.04.128
Google Scholar
[7]
Kolken, H.M.A., Zadpoor, A.A. Auxetic mechanical metamaterials (2017) RSC Advances, 7 (9), pp.5111-5129,.
DOI: 10.1039/c6ra27333e
Google Scholar
[8]
Yang, Y. Sun and T. C. Lueth, Construction of a Production Line for Auxetic Structures Using Novel Modelling Method*,, 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2019, pp.1627-1632,.
DOI: 10.1109/robio49542.2019.8961614
Google Scholar
[9]
Tan, T. W., Douglas, G. R., Bond, T., and Phani, A. S. (November 7, 2011). Compliance and Longitudinal Strain of Cardiovascular Stents: Influence of Cell Geometry., ASME. J. Med. Devices. December 2011; 5(4): 041002.
DOI: 10.1115/1.4005226
Google Scholar
[10]
Wang, Z., Luan, C., Liao, G., Liu, J., Yao, X. and Fu, J. (2020), Progress in Auxetic Mechanical Metamaterials: Structures, Characteristics, Manufacturing Methods, and Applications. Adv. Eng. Mater., 22: 2000312.,.
DOI: 10.1002/adem.202000312
Google Scholar
[11]
Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial Mechanisms., 529–539.
DOI: 10.1145/2984511.2984540
Google Scholar
[12]
Zhichao Dong, Ying Li, Tian Zhao, Wenwang Wu, Dengbao Xiao, Jun Liang,Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb, Materials & Design, Volume 182, 2019, 108036,.
DOI: 10.1016/j.matdes.2019.108036
Google Scholar