[1]
H. Parmar, T. Khan, F. Tucci, R. Uhmer, P.Carlone, Advanced robotics and additive manufacturing of composites: towards a new era in Industry 4.0, Mater. Manuf. Process. 00 (2021) 1–35.
DOI: 10.1080/10426914.2020.1866195
Google Scholar
[2]
W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform. 23 (2014) 1917–(1928).
Google Scholar
[3]
C.Y. Yap, C.K. Chua, Z.L. Dong, et al, Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2 (2015).
Google Scholar
[4]
S. Sanchez, P. Smith, Z. Xu, et al, Powder Bed Fusion of nickel-based superalloys: A review. Int. J. Mach. Tools Manuf. 165 (2021).
Google Scholar
[5]
B.K. Subhas, R. Bhat, K. Ramachandra, et al, Simultaneous Optimization of Machining Parameters for Dimensional Instability Control in Aero Gas Turbine Components Made of Inconel 718 Alloy, J. Manuf. Sci. Eng. Asme 122 (2000) 586–590.
DOI: 10.1115/1.1287591
Google Scholar
[6]
A. El Hassanin, C. Velotti, F. Scherillo, et al, Study of the solid state joining of additive manufactured components. RTSI 2017 - IEEE 3rd Int. Forum Res. Technol. Soc. Ind. Conf. Proc. (2017).
DOI: 10.1109/rtsi.2017.8065967
Google Scholar
[7]
G. Strano, L. Hao, R.M. Everson, et al, Surface roughness analysis, modelling and prediction in selective laser melting, J. Mater. Process. Technol. 213 (2013) 589–597.
DOI: 10.1016/j.jmatprotec.2012.11.011
Google Scholar
[8]
T. DebRoy, H.L. Wei, J.S. Zuback, et al, Additive manufacturing of metallic components – Process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224.
DOI: 10.1016/j.pmatsci.2017.10.001
Google Scholar
[9]
S. Rott, A. Ladewig, K. Friedberger, et al, Surface roughness in laser powder bed fusion – Interdependency of surface orientation and laser incidence, Addit. Manuf. 36 (2020) 101437.
DOI: 10.1016/j.addma.2020.101437
Google Scholar
[10]
J.Y. Lee, A.P. Nagalingam, S.H. Yeo, A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components, Virtual Phys. Prototyp. (2020).
DOI: 10.1080/17452759.2020.1830346
Google Scholar
[11]
F. Scherillo, E. Manco,A. El Hassanin, et al, Chemical surface finishing of electron beam melted Ti6Al4V using HF-HNO3 solutions, J. Manuf. Process. 60 (2020) 400–409.
DOI: 10.1016/j.jmapro.2020.10.033
Google Scholar
[12]
A. El Hassanin, M. Troiano, A.T. Silvestri, et al, Influence of abrasive materials in fluidised bed machining of AlSi10Mg parts made through selective laser melting technology, Key Eng. Mater. 813 (2019) 129–134.
DOI: 10.4028/www.scientific.net/kem.813.129
Google Scholar
[13]
H. Jia, H. Sun, H. Wang, et al, Scanning strategy in selective laser melting (SLM): a review, Int. J. Adv. Manuf. Technol. 113 (2021) 2413–2435.
DOI: 10.1007/s00170-021-06810-3
Google Scholar
[14]
J. Li, D. Zuo, Laser polishing of additive manufactured Ti6Al4V alloy: a review, Opt. Eng. 60 (2021) 1–16.
DOI: 10.1117/1.oe.60.2.020901
Google Scholar
[15]
A. El Hassanin, M.A. Obeidi, F. Scherillo, et al, CO2 laser polishing of laser-powder bed fusion produced AlSi10Mg parts, Surf. Coatings Technol. 419 (2021) 127291.
DOI: 10.1016/j.surfcoat.2021.127291
Google Scholar
[16]
A. Sassmannshausen, A. Brenner, J. Finger, Ultrashort pulse laser polishing by continuous surface melting, J. Mater. Process. Technol. 293 (2021) 117058.
DOI: 10.1016/j.jmatprotec.2021.117058
Google Scholar
[17]
Y. Zhao, J. Sun, K. Guo, et al, Investigation on the effect of laser remelting for laser cladding nickel based alloy, J. Laser Appl. 31 (2019) 022512.
DOI: 10.2351/1.5096126
Google Scholar
[18]
R. Poprawe, Tailored Light 2 Laser Application Technology, Springer, Berlin Heidelberg, Aachen, (2011).
Google Scholar
[19]
E. Masiagutova, F. Cabanettes, A. Sova, et al, Side surface topography generation during laser powder bed fusion of AlSi10Mg, Addit. Manuf. 47 (2021) 102230.
DOI: 10.1016/j.addma.2021.102230
Google Scholar
[20]
E. Beevers, A.D. Brandão, J. Gumpinger, et al, Fatigue properties and material characteristics of additively manufactured AlSi10Mg – Effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties, Int. J. Fatigue 117 (2018) 148–162.
DOI: 10.1016/j.ijfatigue.2018.08.023
Google Scholar
[21]
A. El Hassanin, A.T. Silvestri, F. Napolitano, et al, Laser-powder bed fusion of pre-mixed Inconel718-Cu powders : An experimental study, J. Manuf. Process. 71 (2021) 329–344.
DOI: 10.1016/j.jmapro.2021.09.028
Google Scholar
[22]
ISO. BSI Standards Publication Geometrical product specifications ( GPS ) — Surface texture : Areal Part 2 : Terms , definitions and surface. (2012).
DOI: 10.3403/30397790
Google Scholar
[23]
K. Geels, D. Fowler, W.U. Kopp, et al, Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, (2007).
DOI: 10.1520/mnl46-eb
Google Scholar
[24]
V. Lampitella, M. Trofa, A. Astarita, et al, Discrete Element Method Analysis of the Spreading Mechanism and Its Influence on Powder Bed Characteristics in Additive Manufacturing, Micromachines 12 (2021).
DOI: 10.3390/mi12040392
Google Scholar