Thermal Modeling of Laser Powder Bed Fusion during Printing on Temperature-Unstable Materials Considering Local Sintering

Article Preview

Abstract:

The integration of local metal structures into polymer components using Laser Powder Bed Fusion (PBF-LB/M) offers great potential regarding multifunctional lightweight structures. However, such process hybridization involves huge challenges. In order to reduce the temperature input into the less temperature-resistant materials, the use of lower laser powers in the interfacial region is essential. The resulting local sintering of the metal powder affects the thermal properties in the interfacial region, leading to a change in heat dissipation in the temperature-unstable material. A modeling approach oriented to selective laser sintering is presented for predicting the degree of sintering and associated thermal properties in the context of PBF-LB/M process simulation.

You have full access to the following eBook

Info:

Periodical:

Pages:

331-340

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser additive manufacturing of metallic components: Materials, processes and mechanisms,, International Materials Reviews, vol. 57, no. 3, pp.133-164, (2012).

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[2] R. H. Morgan, A. J. Papworth, C. Sutcliffe, P. Fox, and W. O'Neill, High density net shape components by direct laser re-melting of single-phase powders,, Journal of Materials Science, vol. 37, no. 15, pp.3093-3100, (2002).

DOI: 10.1023/a:1016185606642

Google Scholar

[3] S. Merkt, C. Hinke, H. Schleifenbaum, and H. Voswinckel, Geometric complexity analysis in an integrative technology evaluation model (ITEM) for selective laser melting (SLM),, South African Journal of Industrial Engineering, vol. 23, no. July, pp.97-105, (2012).

DOI: 10.7166/23-2-333

Google Scholar

[4] Y.-H. Chueh, C. Wei, X. Zhang, and L. Li, Integrated laser-based powder bed fusion and fused filament fabrication for three-dimensional printing of hybrid metal/polymer objects,, Additive Manufacturing, vol. 31, p.100928, (2020).

DOI: 10.1016/j.addma.2019.100928

Google Scholar

[5] S.-H. Tang, C.-W. Cheng, R.-Y. Yeh, and R.-Q. Hsu, Direct joining of 3D-printed thermoplastic parts to SLM-fabricated metal cellular structures by ultrasonic welding,, The International Journal of Advanced Manufacturing Technology, vol. 99, no. 1, pp.729-736, (2018).

DOI: 10.1007/s00170-018-2409-8

Google Scholar

[6] G. Lucchetta, F. Marinello, and P. Bariani, Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding," CIRP annals, vol. 60, no. 1, pp.559-562.

DOI: 10.1016/j.cirp.2011.03.073

Google Scholar

[8] J. Xie and J. A. Hurtado, Phase Transformations in Metals during Additive Manufacturing Processes Frictional stability View project Additive Manufacturing Process Simulation View project,, NAFEMS World Congress 2017, no. August, (2017).

Google Scholar

[9] Q. Zhang, J. Xie, Z. Gao, T. London, D. Griffiths, and V. Oancea, A metallurgical phase transformation framework applied to SLM additive manufacturing processes,, Materials and Design, vol. 166, (2019).

DOI: 10.1016/j.matdes.2019.107618

Google Scholar

[10] N. Keller, Nils Keller Verzugsminimierung bei selektiven Laserschmelz- verfahren durch MultiSkalen-Simulation. PhD thesis, Universität Bremen, (2017).

Google Scholar

[11] E. L. Papazoglou, N. E. Karkalos, P. Karmiris-Obratański, and A. P. Markopoulos, On the Modeling and Simulation of SLM and SLS for Metal and Polymer Powders: A Review,, Archives of Computational Methods in Engineering, no. 0123456789, (2021).

DOI: 10.1007/s11831-021-09601-x

Google Scholar

[12] J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai, and D. Zuo, Simulation of temperature distribution in single metallic powder layer for laser micro-sintering,, Computational Materials Science, vol. 53, no. 1, pp.333-339, (2012).

DOI: 10.1016/j.commatsci.2011.09.012

Google Scholar

[13] R. B. Patil and V. Yadava, Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering,, International Journal of Machine Tools and Manufacture, vol. 47, no. 7-8, pp.1069-1080, (2007).

DOI: 10.1016/j.ijmachtools.2006.09.025

Google Scholar

[14] J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources,, METALLURGICAL TRANSACTIONS B, vol. 15B, pp.299-305, (1983).

DOI: 10.1007/bf02667333

Google Scholar

[15] ABAQUS/Standard User Assistance R2021x. Providence, RI, USA: Dassault Systemes Simulia Corp, (2020).

Google Scholar

[16] J. Nandy, N. Yedla, P. Gupta, H. Sarangi, and S. Sahoo, Sintering of AlSi10Mg particles in direct metal laser sintering process: A molecular dynamics simulation study,, Materials Chemistry and Physics, vol. 236, no. June, p.121803, (2019).

DOI: 10.1016/j.matchemphys.2019.121803

Google Scholar

[17] C. Liu, C. Li, Z. Zhang, S. Sun, M. Zeng, F. Wang, Y. Guo, and J. Wang, Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys,, Optics and Laser Technology, vol. 123, no. August, p.105926, (2020).

DOI: 10.1016/j.optlastec.2019.105926

Google Scholar

[18] C. Bellehumeur, L. Li, Q. Sun, and P. Gu, Modeling of bond formation between polymer filaments in the fused deposition modeling process,, Journal of Manufacturing Processes, vol. 6, no. 2, pp.170-178, (2004).

DOI: 10.1016/s1526-6125(04)70071-7

Google Scholar