Effect of Finite Element Mesh Size and Time-Increment on Predicting Part-Scale Temperature for Powder Bed Fusion Process

Article Preview

Abstract:

Simulating powder bed fusion processes (PBF) can reveal temperature evolution in transient mode. Accurate temperature prediction using finite element (FE) method demands both mesh and timeincrements to be very small; thus, requiring a high computational cost. To avoid this, in part-scale simulation, coarse meshes representing multiple powder layers added at once, are usually used which results in fast solving of FE models. Powder layers and time increments are lumped in such a configuration, which results in a deviation of the temperature history. This research proposes a methodology to predict the nodal temperature (NT) due to the combined effect of space and time lumping for part-scale FE thermal simulation for PBF processes. It shows its effects in predicting both the local temperature history and the average far-field temperature.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372. https://doi.org/10.1016/j.commatsci.2016.10.003.

DOI: 10.1016/j.commatsci.2016.10.003

Google Scholar

[2] ISO/ASTM 52900:2015(en), Additive manufacturing — General principles — Terminology. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en. Accessed 30 Nov (2021).

DOI: 10.31030/2631641

Google Scholar

[3] Ullah R, Akmal JS, Laakso SVA, Niemi E (2020) Anisotropy of additively manufactured AlSi10Mg: threads and surface integrity. Int J Adv Manuf Technol 107:3645–3662. https://doi.org/10.1007/s00170-020-05243-8.

DOI: 10.1007/s00170-020-05243-8

Google Scholar

[4] Dunbar AJ, Denlinger ER, Gouge MF, Michaleris P (2016) Experimental validation of finite element modeling for laser powder bed fusion deformation. Addit Manuf 12:108–120. https://doi.org/10.1016/j.addma.2016.08.003.

DOI: 10.1016/j.addma.2016.08.003

Google Scholar

[5] Huang Y, Yang LJ, Du XZ, Yang YP (2016) Finite element analysis of thermal behavior of metal powder during selective laser melting. Int J Therm Sci 104:146–157. https://doi.org/10.1016/j.ijthermalsci.2016.01.007.

DOI: 10.1016/j.ijthermalsci.2016.01.007

Google Scholar

[6] Williams RJ, Davies CM, Hooper PA (2018) A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion. Addit Manuf 22:416–425. https://doi.org/10.1016/j.addma.2018.05.038.

DOI: 10.1016/j.addma.2018.05.038

Google Scholar

[7] Zhang Y, Zhang J (2017) Finite element simulation and experimental validation of distortion and cracking failure phenomena in direct metal laser sintering fabricated component. Addit Manuf 16:49–57. https://doi.org/10.1016/j.addma.2017.05.002.

DOI: 10.1016/j.addma.2017.05.002

Google Scholar

[8] An N, Yang G, Yang K, et al (2021) Implementation of Abaqus user subroutines and plugin for thermal analysis of powder-bed electron-beam-melting additive manufacturing process. Mater Today Commun 27:102307. https://doi.org/10.1016/j.mtcomm.2021.102307.

DOI: 10.1016/j.mtcomm.2021.102307

Google Scholar

[9] Bonifaz EA, Mena A (2021) Directed Energy Deposition Additive Manufacturing Process Simulated with ABAQUS AM Modeler. Int J Robot Eng 6:034.

DOI: 10.35840/2631-5106/4134

Google Scholar

[10] Bhandari S, Lopez-Anido RA (2020) Discrete-Event Simulation Thermal Model for Extrusion-Based Additive Manufacturing of PLA and ABS. Materials 13:4985. https://doi.org/10.3390/ma13214985.

DOI: 10.3390/ma13214985

Google Scholar

[11] Calignano F, Manfredi D, Ambrosio EP, et al (2013) Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67:2743–2751. https://doi.org/10.1007/s00170-012-4688-9.

DOI: 10.1007/s00170-012-4688-9

Google Scholar

[12] Gan Z, Lian Y, Lin SE, et al (2019) Benchmark Study of Thermal Behavior, Surface Topography, and Dendritic Microstructure in Selective Laser Melting of Inconel 625. Integrating Mater Manuf Innov 8:178–193. https://doi.org/10.1007/s40192-019-00130-x.

DOI: 10.1007/s40192-019-00130-x

Google Scholar

[13] Ganeriwala RK, Strantza M, King WE, et al (2019) Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Addit Manuf 27:489–502. https://doi.org/10.1016/j.addma.2019.03.034.

DOI: 10.1016/j.addma.2020.101053

Google Scholar

[14] Yang Y, Allen M, London T, Oancea V (2019) Residual Strain Predictions for a Powder Bed Fusion Inconel 625 Single Cantilever Part. Integrating Mater Manuf Innov 8:294–304. https://doi.org/10.1007/s40192-019-00144-5.

DOI: 10.1007/s40192-019-00144-5

Google Scholar

[15] AMB2018-01 Description. In: NIST. https://www.nist.gov/ambench/amb2018-01-description. Accessed 10 Nov (2021).

Google Scholar

[16] Yang Y, Allen M, London T, Oancea V (2019) Residual Strain Predictions for a Powder Bed Fusion Inconel 625 Single Cantilever Part. Integrating Mater Manuf Innov 8:294–304. https://doi.org/10.1007/s40192-019-00144-5.

DOI: 10.1007/s40192-019-00144-5

Google Scholar