[1]
Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372. https://doi.org/10.1016/j.commatsci.2016.10.003.
DOI: 10.1016/j.commatsci.2016.10.003
Google Scholar
[2]
ISO/ASTM 52900:2015(en), Additive manufacturing — General principles — Terminology. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en. Accessed 30 Nov (2021).
DOI: 10.31030/2631641
Google Scholar
[3]
Ullah R, Akmal JS, Laakso SVA, Niemi E (2020) Anisotropy of additively manufactured AlSi10Mg: threads and surface integrity. Int J Adv Manuf Technol 107:3645–3662. https://doi.org/10.1007/s00170-020-05243-8.
DOI: 10.1007/s00170-020-05243-8
Google Scholar
[4]
Dunbar AJ, Denlinger ER, Gouge MF, Michaleris P (2016) Experimental validation of finite element modeling for laser powder bed fusion deformation. Addit Manuf 12:108–120. https://doi.org/10.1016/j.addma.2016.08.003.
DOI: 10.1016/j.addma.2016.08.003
Google Scholar
[5]
Huang Y, Yang LJ, Du XZ, Yang YP (2016) Finite element analysis of thermal behavior of metal powder during selective laser melting. Int J Therm Sci 104:146–157. https://doi.org/10.1016/j.ijthermalsci.2016.01.007.
DOI: 10.1016/j.ijthermalsci.2016.01.007
Google Scholar
[6]
Williams RJ, Davies CM, Hooper PA (2018) A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion. Addit Manuf 22:416–425. https://doi.org/10.1016/j.addma.2018.05.038.
DOI: 10.1016/j.addma.2018.05.038
Google Scholar
[7]
Zhang Y, Zhang J (2017) Finite element simulation and experimental validation of distortion and cracking failure phenomena in direct metal laser sintering fabricated component. Addit Manuf 16:49–57. https://doi.org/10.1016/j.addma.2017.05.002.
DOI: 10.1016/j.addma.2017.05.002
Google Scholar
[8]
An N, Yang G, Yang K, et al (2021) Implementation of Abaqus user subroutines and plugin for thermal analysis of powder-bed electron-beam-melting additive manufacturing process. Mater Today Commun 27:102307. https://doi.org/10.1016/j.mtcomm.2021.102307.
DOI: 10.1016/j.mtcomm.2021.102307
Google Scholar
[9]
Bonifaz EA, Mena A (2021) Directed Energy Deposition Additive Manufacturing Process Simulated with ABAQUS AM Modeler. Int J Robot Eng 6:034.
DOI: 10.35840/2631-5106/4134
Google Scholar
[10]
Bhandari S, Lopez-Anido RA (2020) Discrete-Event Simulation Thermal Model for Extrusion-Based Additive Manufacturing of PLA and ABS. Materials 13:4985. https://doi.org/10.3390/ma13214985.
DOI: 10.3390/ma13214985
Google Scholar
[11]
Calignano F, Manfredi D, Ambrosio EP, et al (2013) Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67:2743–2751. https://doi.org/10.1007/s00170-012-4688-9.
DOI: 10.1007/s00170-012-4688-9
Google Scholar
[12]
Gan Z, Lian Y, Lin SE, et al (2019) Benchmark Study of Thermal Behavior, Surface Topography, and Dendritic Microstructure in Selective Laser Melting of Inconel 625. Integrating Mater Manuf Innov 8:178–193. https://doi.org/10.1007/s40192-019-00130-x.
DOI: 10.1007/s40192-019-00130-x
Google Scholar
[13]
Ganeriwala RK, Strantza M, King WE, et al (2019) Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Addit Manuf 27:489–502. https://doi.org/10.1016/j.addma.2019.03.034.
DOI: 10.1016/j.addma.2020.101053
Google Scholar
[14]
Yang Y, Allen M, London T, Oancea V (2019) Residual Strain Predictions for a Powder Bed Fusion Inconel 625 Single Cantilever Part. Integrating Mater Manuf Innov 8:294–304. https://doi.org/10.1007/s40192-019-00144-5.
DOI: 10.1007/s40192-019-00144-5
Google Scholar
[15]
AMB2018-01 Description. In: NIST. https://www.nist.gov/ambench/amb2018-01-description. Accessed 10 Nov (2021).
Google Scholar
[16]
Yang Y, Allen M, London T, Oancea V (2019) Residual Strain Predictions for a Powder Bed Fusion Inconel 625 Single Cantilever Part. Integrating Mater Manuf Innov 8:294–304. https://doi.org/10.1007/s40192-019-00144-5.
DOI: 10.1007/s40192-019-00144-5
Google Scholar