[1]
M. Grasso, B. M. Colosimo, Process defects and in situ monitoring methods in metal powder bed fusion: A review, Measurement Science and Technology 28 (2017).
DOI: 10.1088/1361-6501/aa5c4f
Google Scholar
[2]
S. K. Everton, M. Hirsch, P. I. Stavroulakis, R. K. Leac, A. T. Clare, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Materials and Design 95 (2016) 431–445.
DOI: 10.1016/j.matdes.2016.01.099
Google Scholar
[3]
J.M. Waller, B.H. Parker, K.L. Hodges, E.R. Burke, J.L. Walker, Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report, Nasa/Tm-2014-218560 (2014) 1–36.
Google Scholar
[4]
L. W. Koester, H. Taheri, T. A. Bigelow, P. C. Collins, L. J. Bond, Nondestructive testing for metal parts fabricated using powder-based additive manufacturing, Materials Evaluation 76 (2018) 514–524.
Google Scholar
[5]
P. Nilsson, A. Appelgren, P. Henrikson, A. Runnemalm, Automatic Ultrasonic testing for Metal Deposition, 18th World Conference on Nondestructive Testing (2012) 16–20.
Google Scholar
[6]
H. Krauss, T. Zeugner, M. F. Zaeh, Layerwise monitoring of the Selective Laser Melting process by thermography, Physics Procedia 56 (2014) 64–71.
DOI: 10.1016/j.phpro.2014.08.097
Google Scholar
[7]
J. Bamberg, Z. Günter, A. Ladewig, In-Process Control of Selective Laser Melting by Quantitative Optical Tomography, 19th World Conference on Non-Destructive Testing (2016) 1–8.
Google Scholar
[8]
B. K. Foster, E. W. Reutzel, A. Nassar, B. T. Hall, S. Brown, C. Dickman, Optical, layerwise monitoring of powder bed fusion (2020) 295–307.
Google Scholar
[9]
F. Honarvar, A. Varvani-Farahani, A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control, Ultrasonics 108 (2020).
DOI: 10.1016/j.ultras.2020.106227
Google Scholar
[10]
Y. Song, X. Zi, Y. Fu, X. Li, C. Chen, K. Zhou, Nondestructive testing of additively manufactured material based on ultrasonic scattering measurement, Measurement 118 (2018) 105–112.
DOI: 10.1016/j.measurement.2018.01.020
Google Scholar
[11]
A. Turó, J. A. Chávez, M. J. García-Hernández, A. Bulkai, P. Tomek, G. Tóth, A. Gironés, J. Salazar, Ultrasonic inspection system for powder metallurgy parts, Measurement 46 (2013) 1101–1108.
DOI: 10.1016/j.measurement.2012.10.016
Google Scholar
[12]
D. Cerniglia, N. Montinaro, Defect detection in additively manufactured components: Laser ultrasound and laser thermography comparison, Procedia Structural Integrity 8 (2018) 154–162.
DOI: 10.1016/j.prostr.2017.12.016
Google Scholar
[13]
H. Rieder, A. Dillhöfer, M. Spies, J. Bamberg, T. Hess, Online Monitoring of Additive Manufacturing Processes Using Ultrasound, Proceedings of the 11th European Conference on Non-Destructive Testing 1 (2014) 2194–2201.
DOI: 10.1063/1.4914609
Google Scholar
[14]
H. Rieder, M. Spies, J. Bamberg, B. Henkel, On- and offline ultrasonic characterization and inspection of additively manufactured components, 55th Annual Conference of the British Institute of Non-Destructive Testing, NDT 2016 (2016) 328–336.
DOI: 10.1063/1.4940605
Google Scholar
[15]
E. L. E. Clezio, G. Despaux, J. yves Ferrandis, E. Rosenkrantz, Caractérisation de solides ou liquides par méthode de pulse-écho, Les techniques de l'ingénieur 33 (2018).
DOI: 10.51257/a-v1-r4043
Google Scholar
[16]
A. Domashenkov, Etude de la faisabilité de la fabrication de pièces fonctionnelles à partir d'alliages intermétalliques, matériaux métallo-céramiques et superalliages au moyen de la fusion sélective par laser, Ph.D. thesis, Ecole Nationale d'Ingénieurs de Saint-Etienne, (2016).
DOI: 10.51257/a-v1-bm7930
Google Scholar
[17]
J. A. Slotwinski, E. J. Garboczi, Porosity of additive manufacturing parts for process monitoring, in: AIP conference proceedings, volume 1581, American Institute of Physics, p.1197–1204.
DOI: 10.1063/1.4864957
Google Scholar