Ultrasonic Monitoring of Part’s Height and Layer Thickness in Powder Bed Fusion

Article Preview

Abstract:

This paper presents a preliminary study on an in-situ ultrasonic measurement technique applied to monitoring part’s height and defect occurrence during the Laser Powder Bed Fusion process. Firstly the ultrasonic wave speed is determined for LPBF manufactured 100Cr6 samples with a pulse echo configuration and a 10Mhz ultrasonic wave. A measured propagation speed value, of 5660 ±100m/s in every direction confirms the isotropy of the obtained LPBF samples. Secondly, the ultrasonic pulse echo technique is used to monitor the part’s height evolution during the process based on the measured propagation velocity. This new method provides in-situ measurements showing that the actual remelted layer thickness value oscillates in the range of ± 30% of the theoretical layer thickness.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] M. Grasso, B. M. Colosimo, Process defects and in situ monitoring methods in metal powder bed fusion: A review, Measurement Science and Technology 28 (2017).

DOI: 10.1088/1361-6501/aa5c4f

Google Scholar

[2] S. K. Everton, M. Hirsch, P. I. Stavroulakis, R. K. Leac, A. T. Clare, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Materials and Design 95 (2016) 431–445.

DOI: 10.1016/j.matdes.2016.01.099

Google Scholar

[3] J.M. Waller, B.H. Parker, K.L. Hodges, E.R. Burke, J.L. Walker, Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report, Nasa/Tm-2014-218560 (2014) 1–36.

Google Scholar

[4] L. W. Koester, H. Taheri, T. A. Bigelow, P. C. Collins, L. J. Bond, Nondestructive testing for metal parts fabricated using powder-based additive manufacturing, Materials Evaluation 76 (2018) 514–524.

Google Scholar

[5] P. Nilsson, A. Appelgren, P. Henrikson, A. Runnemalm, Automatic Ultrasonic testing for Metal Deposition, 18th World Conference on Nondestructive Testing (2012) 16–20.

Google Scholar

[6] H. Krauss, T. Zeugner, M. F. Zaeh, Layerwise monitoring of the Selective Laser Melting process by thermography, Physics Procedia 56 (2014) 64–71.

DOI: 10.1016/j.phpro.2014.08.097

Google Scholar

[7] J. Bamberg, Z. Günter, A. Ladewig, In-Process Control of Selective Laser Melting by Quantitative Optical Tomography, 19th World Conference on Non-Destructive Testing (2016) 1–8.

Google Scholar

[8] B. K. Foster, E. W. Reutzel, A. Nassar, B. T. Hall, S. Brown, C. Dickman, Optical, layerwise monitoring of powder bed fusion (2020) 295–307.

Google Scholar

[9] F. Honarvar, A. Varvani-Farahani, A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control, Ultrasonics 108 (2020).

DOI: 10.1016/j.ultras.2020.106227

Google Scholar

[10] Y. Song, X. Zi, Y. Fu, X. Li, C. Chen, K. Zhou, Nondestructive testing of additively manufactured material based on ultrasonic scattering measurement, Measurement 118 (2018) 105–112.

DOI: 10.1016/j.measurement.2018.01.020

Google Scholar

[11] A. Turó, J. A. Chávez, M. J. García-Hernández, A. Bulkai, P. Tomek, G. Tóth, A. Gironés, J. Salazar, Ultrasonic inspection system for powder metallurgy parts, Measurement 46 (2013) 1101–1108.

DOI: 10.1016/j.measurement.2012.10.016

Google Scholar

[12] D. Cerniglia, N. Montinaro, Defect detection in additively manufactured components: Laser ultrasound and laser thermography comparison, Procedia Structural Integrity 8 (2018) 154–162.

DOI: 10.1016/j.prostr.2017.12.016

Google Scholar

[13] H. Rieder, A. Dillhöfer, M. Spies, J. Bamberg, T. Hess, Online Monitoring of Additive Manufacturing Processes Using Ultrasound, Proceedings of the 11th European Conference on Non-Destructive Testing 1 (2014) 2194–2201.

DOI: 10.1063/1.4914609

Google Scholar

[14] H. Rieder, M. Spies, J. Bamberg, B. Henkel, On- and offline ultrasonic characterization and inspection of additively manufactured components, 55th Annual Conference of the British Institute of Non-Destructive Testing, NDT 2016 (2016) 328–336.

DOI: 10.1063/1.4940605

Google Scholar

[15] E. L. E. Clezio, G. Despaux, J. yves Ferrandis, E. Rosenkrantz, Caractérisation de solides ou liquides par méthode de pulse-écho, Les techniques de l'ingénieur 33 (2018).

DOI: 10.51257/a-v1-r4043

Google Scholar

[16] A. Domashenkov, Etude de la faisabilité de la fabrication de pièces fonctionnelles à partir d'alliages intermétalliques, matériaux métallo-céramiques et superalliages au moyen de la fusion sélective par laser, Ph.D. thesis, Ecole Nationale d'Ingénieurs de Saint-Etienne, (2016).

DOI: 10.51257/a-v1-bm7930

Google Scholar

[17] J. A. Slotwinski, E. J. Garboczi, Porosity of additive manufacturing parts for process monitoring, in: AIP conference proceedings, volume 1581, American Institute of Physics, p.1197–1204.

DOI: 10.1063/1.4864957

Google Scholar