Local Formability of Different Advanced High Strength Steels

Article Preview

Abstract:

Medium-Mn steel (MMnS) is a promising candidate of the third generation of advanced high strength steels (AHSS), which can provide superior tensile properties. To consider the edge crack issues, the local formability, as an indicator of fracture resistance, of the MMnS needs to be quantitatively evaluated for their potential application to industries. Thus, the local formability of two different MMnS is evaluated by the forming limits at fracture using the damage mechanics approaches and compared with a DP1000 steel in this study. Despite the superior tensile properties, the local formability of the investigated MMnS is worse than the DP1000, which is characterized by the fracture strain under different stress states. Therefore, for the assessment of their potential application in automotive industries, it is recommended that more attention should be paid to the local formability and fracture resistance of these advanced high strength steels.

You have full access to the following eBook

Info:

Periodical:

Pages:

917-925

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] B. Hu, H. Luo, F. Yang, H. Dong, Recent progress in medium-Mn steels made with new designing strategies, a review, Journal of Materials Science & Technology 33(12) (2017) 1457-1464.

DOI: 10.1016/j.jmst.2017.06.017

Google Scholar

[2] J. Hu, L.-X. Du, W. Xu, J.-H. Zhai, Y. Dong, Y.-J. Liu, R.D.K. Misra, Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite, Materials Characterization 136 (2018) 20-28.

DOI: 10.1016/j.matchar.2017.11.058

Google Scholar

[3] Y. Li, M. Luo, J. Gerlach, T. Wierzbicki, Prediction of shear-induced fracture in sheet metal forming, Journal of Materials Processing Technology 210(14) (2010) 1858-1869.

DOI: 10.1016/j.jmatprotec.2010.06.021

Google Scholar

[4] K. Chung, H. Kim, C. Lee, Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity. Part I: Deformation path insensitive formula based on theoretical models, International Journal of Plasticity 58 (2014) 3-34.

DOI: 10.1016/j.ijplas.2014.03.009

Google Scholar

[5] S. Heibel, T. Dettinger, W. Nester, T. Clausmeyer, A.E. Tekkaya, Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels, Materials (Basel) 11(5) (2018).

DOI: 10.3390/ma11050761

Google Scholar

[6] B. Hance, Advanced high strength steel: Deciphering local and global formability, Proc. International Automotive Body Congress, Dearborn, MI, (2016).

Google Scholar

[7] M. Kaupper, M. Merklein, Bendability of advanced high strength steels—A new evaluation procedure, CIRP Annals 62(1) (2013) 247-250.

DOI: 10.1016/j.cirp.2013.03.049

Google Scholar

[8] L. Mu, Z. Jia, Z. Ma, F. Shen, Y. Sun, Y. Zang, A theoretical prediction framework for the construction of a fracture forming limit curve accounting for fracture pattern transition, International Journal of Plasticity 129 (2020).

DOI: 10.1016/j.ijplas.2020.102706

Google Scholar

[9] F. Shen, H. Wang, Z. Liu, W. Liu, M. Könemann, G. Yuan, G. Wang, S. Münstermann, J. Lian, Local formability of medium-Mn steel, Journal of Materials Processing Technology 299 (2022).

DOI: 10.1016/j.jmatprotec.2021.117368

Google Scholar

[10] N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang, M.H. Seo, Fracture-based forming limit criteria for anisotropic materials in sheet metal forming, International Journal of Plasticity 96 (2017) 1-35.

DOI: 10.1016/j.ijplas.2016.04.014

Google Scholar

[11] C.C. Roth, D. Mohr, Determining the strain to fracture for simple shear for a wide range of sheet metals, International Journal of Mechanical Sciences 149 (2018) 224-240.

DOI: 10.1016/j.ijmecsci.2018.10.007

Google Scholar

[12] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity 24(6) (2008) 1071-1096.

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[13] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International Journal of Fracture 161(1) (2009) 1-20.

DOI: 10.1007/s10704-009-9422-8

Google Scholar

[14] D. Mohr, S.J. Marcadet, Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities, International Journal of Solids and Structures 67-68 (2015) 40-55.

DOI: 10.1016/j.ijsolstr.2015.02.024

Google Scholar

[15] Y. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya, J.W. Yoon, Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals, International Journal of Solids and Structures 112 (2017) 169-184.

DOI: 10.1016/j.ijsolstr.2016.11.034

Google Scholar

[16] J. Lian, M. Sharaf, F. Archie, S. Münstermann, A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets, International Journal of Damage Mechanics 22(2) (2012) 188-218.

DOI: 10.1177/1056789512439319

Google Scholar

[17] F. Shen, S. Münstermann, J. Lian, Investigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics model, Engineering Fracture Mechanics 227 (2020) 106900.

DOI: 10.1016/j.engfracmech.2020.106900

Google Scholar

[18] F. Pütz, F. Shen, M. Könemann, S. Münstermann, The differences of damage initiation and accumulation of DP steels: a numerical and experimental analysis, International Journal of Fracture 226(1) (2020) 1-15.

DOI: 10.1007/s10704-020-00457-z

Google Scholar

[19] M.C. Butuc, F. Barlat, G. Vincze, The formability of twinning—Induced plasticity steels predicted on the base of Marciniak-Kuczynski theory, Journal of Materials Processing Technology 287 (2021).

DOI: 10.1016/j.jmatprotec.2019.116496

Google Scholar

[20] W. Liu, J. Lian, S. Münstermann, C. Zeng, X. Fang, Prediction of crack formation in the progressive folding of square tubes during dynamic axial crushing, International Journal of Mechanical Sciences 176 (2020).

DOI: 10.1016/j.ijmecsci.2020.105534

Google Scholar