[1]
B. Hu, H. Luo, F. Yang, H. Dong, Recent progress in medium-Mn steels made with new designing strategies, a review, Journal of Materials Science & Technology 33(12) (2017) 1457-1464.
DOI: 10.1016/j.jmst.2017.06.017
Google Scholar
[2]
J. Hu, L.-X. Du, W. Xu, J.-H. Zhai, Y. Dong, Y.-J. Liu, R.D.K. Misra, Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite, Materials Characterization 136 (2018) 20-28.
DOI: 10.1016/j.matchar.2017.11.058
Google Scholar
[3]
Y. Li, M. Luo, J. Gerlach, T. Wierzbicki, Prediction of shear-induced fracture in sheet metal forming, Journal of Materials Processing Technology 210(14) (2010) 1858-1869.
DOI: 10.1016/j.jmatprotec.2010.06.021
Google Scholar
[4]
K. Chung, H. Kim, C. Lee, Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity. Part I: Deformation path insensitive formula based on theoretical models, International Journal of Plasticity 58 (2014) 3-34.
DOI: 10.1016/j.ijplas.2014.03.009
Google Scholar
[5]
S. Heibel, T. Dettinger, W. Nester, T. Clausmeyer, A.E. Tekkaya, Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels, Materials (Basel) 11(5) (2018).
DOI: 10.3390/ma11050761
Google Scholar
[6]
B. Hance, Advanced high strength steel: Deciphering local and global formability, Proc. International Automotive Body Congress, Dearborn, MI, (2016).
Google Scholar
[7]
M. Kaupper, M. Merklein, Bendability of advanced high strength steels—A new evaluation procedure, CIRP Annals 62(1) (2013) 247-250.
DOI: 10.1016/j.cirp.2013.03.049
Google Scholar
[8]
L. Mu, Z. Jia, Z. Ma, F. Shen, Y. Sun, Y. Zang, A theoretical prediction framework for the construction of a fracture forming limit curve accounting for fracture pattern transition, International Journal of Plasticity 129 (2020).
DOI: 10.1016/j.ijplas.2020.102706
Google Scholar
[9]
F. Shen, H. Wang, Z. Liu, W. Liu, M. Könemann, G. Yuan, G. Wang, S. Münstermann, J. Lian, Local formability of medium-Mn steel, Journal of Materials Processing Technology 299 (2022).
DOI: 10.1016/j.jmatprotec.2021.117368
Google Scholar
[10]
N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang, M.H. Seo, Fracture-based forming limit criteria for anisotropic materials in sheet metal forming, International Journal of Plasticity 96 (2017) 1-35.
DOI: 10.1016/j.ijplas.2016.04.014
Google Scholar
[11]
C.C. Roth, D. Mohr, Determining the strain to fracture for simple shear for a wide range of sheet metals, International Journal of Mechanical Sciences 149 (2018) 224-240.
DOI: 10.1016/j.ijmecsci.2018.10.007
Google Scholar
[12]
Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity 24(6) (2008) 1071-1096.
DOI: 10.1016/j.ijplas.2007.09.004
Google Scholar
[13]
Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International Journal of Fracture 161(1) (2009) 1-20.
DOI: 10.1007/s10704-009-9422-8
Google Scholar
[14]
D. Mohr, S.J. Marcadet, Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities, International Journal of Solids and Structures 67-68 (2015) 40-55.
DOI: 10.1016/j.ijsolstr.2015.02.024
Google Scholar
[15]
Y. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya, J.W. Yoon, Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals, International Journal of Solids and Structures 112 (2017) 169-184.
DOI: 10.1016/j.ijsolstr.2016.11.034
Google Scholar
[16]
J. Lian, M. Sharaf, F. Archie, S. Münstermann, A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets, International Journal of Damage Mechanics 22(2) (2012) 188-218.
DOI: 10.1177/1056789512439319
Google Scholar
[17]
F. Shen, S. Münstermann, J. Lian, Investigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics model, Engineering Fracture Mechanics 227 (2020) 106900.
DOI: 10.1016/j.engfracmech.2020.106900
Google Scholar
[18]
F. Pütz, F. Shen, M. Könemann, S. Münstermann, The differences of damage initiation and accumulation of DP steels: a numerical and experimental analysis, International Journal of Fracture 226(1) (2020) 1-15.
DOI: 10.1007/s10704-020-00457-z
Google Scholar
[19]
M.C. Butuc, F. Barlat, G. Vincze, The formability of twinning—Induced plasticity steels predicted on the base of Marciniak-Kuczynski theory, Journal of Materials Processing Technology 287 (2021).
DOI: 10.1016/j.jmatprotec.2019.116496
Google Scholar
[20]
W. Liu, J. Lian, S. Münstermann, C. Zeng, X. Fang, Prediction of crack formation in the progressive folding of square tubes during dynamic axial crushing, International Journal of Mechanical Sciences 176 (2020).
DOI: 10.1016/j.ijmecsci.2020.105534
Google Scholar