Synthesis and Dielectric Characterization of Nd Doped SrTiO3 Ceramics for Energy Storage Applications

Article Preview

Abstract:

A detailed study on the structural and dielectric characterization of the Nd doped SrTiO3 ceramics at radio frequencies were conducted in this paper. Sr1-xNdxTiO3 (x from 0 to 0.13) ceramics were synthesized using the conventional solid state ceramic route and the phase purity was confirmed through XRD analysis. XRD patterns of the ceramics showed almost similar peaks with no additional phases. A reduction in the lattice parameter can be observed with increase in the Nd content, which can be attributed to the possible lattice shrinkage due to the substitution by a smaller sized ion. The SEM images also showed a reduction in grain size which can be due the fact that Nd doping induces Sr and Ti vacancies in the system which inhibits the grain growth. The dielectric characterization at 1 MHz was done and optimal values of εr=5496 and tanδ=0.0925 were observed at x=0.1. Thus the synthesized ceramics can be used for energy storage applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. T. Sebastian, R. Ubic, H. Jantunen. Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 60 (2015) 392–412.

DOI: 10.1179/1743280415y.0000000007

Google Scholar

[2] Z. Liu, Y. Wang, W. Wu, Y. Li. Li-Nb-Ti-O microwave dielectric ceramics. Journal of Asian Ceramic Societies. Elsevier B.V.

DOI: 10.1016/j.jascer.2013.02.002

Google Scholar

[3] S. Takahashi, Y. Imai, A. Kan, Y. Hotta, H. Ogawa. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications. Journal of Alloys And Compounds, 615 (2014) 141–145.

DOI: 10.1016/j.jallcom.2014.06.138

Google Scholar

[4] R. Ratheesh. Development and characterization of high dielectric flexible PTFE/ceramic substrates for microwave circuit applications, (2009) 680771.

Google Scholar

[5] G. Saravanan, K. Ramachandran, J. Gajendiran, E. Padmini. Effect of ceria concentration of Strontium titanate on the structural, optical, dielectric and electrical properties. Chemical Physics Letters, 746 (2020).

DOI: 10.1016/j.cplett.2020.137314

Google Scholar

[6] X. Guo, Y. Pu, J. Ji, W. Wang, J. Li, R. Shi, M. Yang. Colossal permittivity and high insulation resistivity in Dy- modified SrTiO3 lead-free ceramic materials with low dielectric loss. Ceramics International, 46 (2020) 10075–10082.

DOI: 10.1016/j.ceramint.2019.12.275

Google Scholar

[7] A. Tkach, T. M. Correia, A. Almeida, J. Agostinho Moreira, M. R. Chaves, O. Okhay, … J. Petzelt. Role of trivalent Sr substituents and Sr vacancies in tetragonal and polar states of SrTiO3. Acta Materialia, 59 (2011) 5388–5397.

DOI: 10.1016/j.actamat.2011.05.011

Google Scholar

[8] C. C. Wang, C. M. Lei, G. J. Wang, X. H. Sun, T. Li, S. G. Huang, … Y. D. Li. Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. Journal of Applied Physics, 113 (2013) 1–10.

DOI: 10.1063/1.4794349

Google Scholar

[9] R. C. Pullar, S. J. Penn, X. Wang, I. M. Reaney, N. Mcn. Dielectric loss caused by oxygen vacancies in titania ceramics, 29 (2009) 419–424.

DOI: 10.1016/j.jeurceramsoc.2008.06.019

Google Scholar

[10] G. Subodh, M. T. Sebastian. Microwave dielectric properties of Sr2Ce2Ti5O16 ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 136 (2007) 50–56.

DOI: 10.1016/j.mseb.2006.09.015

Google Scholar

[11] L. Wang, Y. Sakka, Y. Shao, G. A. Botton, T. Kolodiazhnyi. Coexistence of A- and B-site vacancy compensation in La-doped Sr 1-xBaxTiO3. Journal of the American Ceramic Society, 93 (2010) 2903–2908.

DOI: 10.1111/j.1551-2916.2010.03810.x

Google Scholar

[12] S. Spasović, N. Paunović, D. Popović, J. Dojčilović. Infrared and dielectrical properties of SrTiO3: Nd. Materials Science Forum, 518 (2006) 471–476.

DOI: 10.4028/www.scientific.net/msf.518.471

Google Scholar

[13] W. Q. Luo, Z. Y. Shen, Y. M. Li, Z. M. Wang, R. H. Liao, X. Y. Gu. Structural characterizations, dielectric properties and impedance spectroscopy analysis of Nd x Sr1-1.5x TiO3 ceramics. Journal of Electroceramics, 31 (2013) 117–123.

DOI: 10.1007/s10832-013-9805-0

Google Scholar

[14] W. Bian, X. Lu, Y. Li, C. Min, H. Zhu, Z. Fu, Q. Zhang. Influence of Nd doping on microwave dielectric properties of SrTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 29 (2018) 2743–2747.

DOI: 10.1007/s10854-017-8201-y

Google Scholar

[15] Z. Y. Shen, Y. M. Li, W. Q. Luo, Z. M. Wang, X. Y. Gu, R. H. Liao. Structure and dielectric properties of Nd x Sr1-x TiO3 ceramics for energy storage application. Journal of Materials Science: Materials in Electronics, 24 (2013) 704–710.

DOI: 10.1007/s10854-012-0798-2

Google Scholar

[16] F. Liu, C. Yuan, X. Liu, G. Chen, C. Zhou, J. Qu. Microstructures and dielectric properties of (1−x)SrTiO3–xCa0.61Nd0.26TiO3 ceramic system at microwave frequencies. Journal of Materials Science: Materials in Electronics, 26 (2015) 128–133.

DOI: 10.1007/s10854-014-2373-5

Google Scholar

[17] L. Cheng, P. Liu, S. X. Qu, L. Cheng, H. Zhang. Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. Journal of Alloys and Compounds. Elsevier Ltd.

DOI: 10.1016/j.jallcom.2014.10.149

Google Scholar

[18] R. Lowndes, M. Deluca, F. Azough, R. Freer. Probing structural changes in Ca (1-x) Nd2x/3TiO 3 ceramics by Raman spectroscopy. Journal of Applied Physics, 113 (2013) 1–7.

DOI: 10.1063/1.4789601

Google Scholar

[19] S. Jin, X. Qiu, B. Huang, L. Wang, Q. Zhang, Z. Fu. Dielectric properties of modified BNT/PTFE composites for microwave RF antenna applications. Journal Of Materials Science-Materials In Electronics, 27 (2016) 8378–8383.

DOI: 10.1007/s10854-016-4849-y

Google Scholar

[20] S. Jin, L. Wang, Z. Wang, B. Huang, Q. Zhang, Z. Fu. Dielectric properties of modified SrTiO3/PTFE composites for microwave RF antenna applications. Journal of Materials Science: Materials in Electronics, 26 (2015) 7431–7437.

DOI: 10.1007/s10854-015-3374-8

Google Scholar

[21] S. Rajesh, K. P. Murali, R. Ratheesh. Temperature stable low loss PTFE/rutile composites using secondary polymer. Applied Physics A-Materials Science & Processing, 104 (2011) 159–164.

DOI: 10.1007/s00339-010-6088-z

Google Scholar

[22] A. Ashokbabu, P. Thomas. Dielectric and Thermal Behavior of Polystyrene/Sr2TiMnO6 (STMO) Composites. Transactions of the Indian Ceramic Society, 80 (2021) 96–102.

DOI: 10.1080/0371750x.2021.1888806

Google Scholar