[1]
Choi, Joonmyung, Hyunseong Shin, and Maenghyo Cho. A multiscale mechanical model for the effective interphase of SWNT/epoxy nanocomposite., Polymer 89 (2016) 159-171.
DOI: 10.1016/j.polymer.2016.02.041
Google Scholar
[2]
Qian, D., E. Co Dickey, R. Andrews, and T. Rantell. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites., Applied physics letters 76, no. 20 (2000) 2868-2870.
DOI: 10.1063/1.126500
Google Scholar
[3]
Wuite, J., and S. Adali. Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis., Composite Structures 71, no. 3-4 (2005) 388-396.
DOI: 10.1016/j.compstruct.2005.09.011
Google Scholar
[4]
Arabghahestani, M., and S. M. H. Karimian. Molecular dynamics simulation of rotating carbon nanotube in uniform liquid argon flow., Journal of Molecular Liquids 225 (2017) 357-364.
DOI: 10.1016/j.molliq.2016.11.032
Google Scholar
[5]
Shen, Hui-Shen. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments., Composite Structures 91, no. 1 (2009) 9-19.
DOI: 10.1016/j.compstruct.2009.04.026
Google Scholar
[6]
Kumar, P. and Srinivas, J. Free vibration, bending and buckling of a FG-CNT reinforced composite beam: Comparative analysis with hybrid laminated composite beam., Multidiscipline Modeling in Materials and Structures 13 (2017) 590-611.
DOI: 10.1108/mmms-05-2017-0032
Google Scholar
[7]
Kumar, M. and Sarangi, S. K. Harmonic response of carbon nanotube reinforced functionally graded beam by finite element method,. Materials Today: Proceedings, 44 (2021) 4531-4536.
DOI: 10.1016/j.matpr.2020.10.810
Google Scholar
[8]
Kumar, M. and Sarangi, S. K. Analysis of Carbon Nanotubes Reinforced Functionally Graded Composite Beams by Finite Elements Method, Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020), Springer (2022) 329-341.
DOI: 10.1007/978-3-030-73495-4_23
Google Scholar
[9]
Zhu, H., and B. V. Sankar. A combined Fourier series–Galerkin method for the analysis of functionally graded beams., J. Appl. Mech. 71, no. 3 (2004) 421-424.
DOI: 10.1115/1.1751184
Google Scholar
[10]
Jia, X. L., L. L. Ke, X. L. Zhong, Y. Sun, J. Yang, and S. Kitipornchai. Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory., Composite Structures 202 (2018) 625-634.
DOI: 10.1016/j.compstruct.2018.03.025
Google Scholar
[11]
Vodenitcharova, T., and L. C. Zhang. Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube., International journal of solids and structures 43, no. 10 (2006) 3006-3024.
DOI: 10.1016/j.ijsolstr.2005.05.014
Google Scholar
[12]
Yasin, M. Yaqoob, Bhanu Prakash, and Arshad Hussain Khan. Finite element model based on an efficient layerwise theory for dynamics and active vibration control of smart functionally graded beams., Materials Research Express 7, no. 2 (2020) 025703.
DOI: 10.1088/2053-1591/ab6f3f
Google Scholar
[13]
Mallek, H., H. Jrad, M. Wali, and F. Dammak. Piezoelastic response of smart functionally graded structure with integrated piezoelectric layers using discrete double directors shell element., Composite Structures 210 (2019) 354-366.
DOI: 10.1016/j.compstruct.2018.11.062
Google Scholar
[14]
Alghanmi, Rabab A., and Ashraf M. Zenkour. Effect of porosity on the bending of functionally graded plates integrated with PFRC layer., The European Physical Journal Plus 136, no. 2 (2021) 1-20.
DOI: 10.1140/epjp/s13360-021-01123-6
Google Scholar
[15]
Rafiee, M., Jie Yang, and Siritiwat Kitipornchai. Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams., Computers & Mathematics with Applications 66, no. 7 (2013) 1147-1160.
DOI: 10.1016/j.camwa.2013.04.031
Google Scholar
[16]
Yang, Jie, and Yin Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks., Composite Structures 83, no. 1 (2008) 48-60.
DOI: 10.1016/j.compstruct.2007.03.006
Google Scholar
[17]
Singh, S. J., and Harsha, S. P.. Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading., Journal of Mechanical Science and Technology 33, no. 4 (2019) 1761-1767.
DOI: 10.1007/s12206-019-0328-8
Google Scholar
[18]
Ray, M. C., and R. C. Batra. Effective properties of carbon nanotube and piezoelectric fiber reinforced hybrid smart composites., Journal of Applied Mechanics 76 (2009) 034503.
DOI: 10.1115/1.3063633
Google Scholar
[19]
Ke, Liao-Liang, Yue-Sheng Wang, and Zheng-Dao Wang. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory., Composite Structures 94, no. 6 (2012) 2038-2047.
DOI: 10.1016/j.compstruct.2012.01.023
Google Scholar
[20]
Arshid, E., and Khorshidvand, A. R. (2018). Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method,. Thin-Walled Structures, 125 (2018) 220-233.
DOI: 10.1016/j.tws.2018.01.007
Google Scholar