[1]
R. Khan, S. Javed, M. Islam, Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications, IntechOpen, (2018).
Google Scholar
[2]
R. Prado, G. Beobide, A. Marcaide, J. Goikoetxea, A. Aranzabe, Development of multifunctional sol–gel coatings: Anti-reflection coatings with enhanced self-cleaning capacity, Sol. Energy Mater. Sol. Cells. 94 (2010) 1081–1088.
DOI: 10.1016/j.solmat.2010.02.031
Google Scholar
[3]
M. Wu, M. Doi, X. Man, The contact angle of an evaporating droplet of a binary solution on a super wetting surface, Soft Matter. 17 (2021) 7932–7939.
DOI: 10.1039/d1sm00414j
Google Scholar
[4]
A. Kafizas, S. Kellici, J.A. Darr, I.P. Parkin, Journal of Photochemistry and Photobiology A : Chemistry Titanium dioxide and composite metal / metal oxide titania thin films on glass : A comparative study of photocatalytic activity, 204 (2009) 183–190.
DOI: 10.1016/j.jphotochem.2009.03.017
Google Scholar
[5]
X.D. Xu, X. Chen, B. Yu, Z.Z. Guan, H.L. Cong, Q.H. Peng, M.M. Jiao, Facile preparation of self-cleaning superhydrophobic coatings, Integr. Ferroelectr. 170 (2016) 92–99.
DOI: 10.1080/10584587.2016.1169104
Google Scholar
[6]
S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis, Appl. Catal. B Environ. 176–177 (2015) 396–428.
DOI: 10.1016/j.apcatb.2015.03.058
Google Scholar
[7]
M. Shaban, M. Zayed, H. Hamdy, Nanostructured ZnO thin films for self-cleaning applications, RSC Adv. 7 (2017) 617–631.
DOI: 10.1039/c6ra24788a
Google Scholar
[8]
X. Zhang, Y. Xia, T. He, Tuning photoluminescence properties of ZnO nanorods via surface modification, Mater. Chem. Phys. 137 (2012) 622–627.
DOI: 10.1016/j.matchemphys.2012.09.065
Google Scholar
[9]
M.A. Irshad, R. Nawaz, M.Z. ur Rehman, M. Adrees, M. Rizwan, S. Ali, S. Ahmad, S. Tasleem, Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review, Ecotoxicol. Environ. Saf. 212 (2021) 111978.
DOI: 10.1016/j.ecoenv.2021.111978
Google Scholar
[10]
M. Sulaman et al., Interlayer of PMMA Doped with Au Nanoparticles for High-Performance Tandem Photodetectors: A Solution to Suppress Dark Current and Maintain High Photocurrent, ACS Appl. Mater. Interfaces, 23 (2020) 26153–26160.
DOI: 10.1021/acsami.0c04093
Google Scholar
[11]
B. Xi, L.K. Verma, J. Li, C.S. Bhatia, A.J. Danner, H. Yang, H.C. Zeng, TiO2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications, ACS Appl. Mater. Interfaces. 4 (2012) 1093–1102.
DOI: 10.1021/am201721e
Google Scholar
[12]
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature. 388 (1997) 431–432.
DOI: 10.1038/41233
Google Scholar
[13]
A. Imran et al., Modeling and simulation of high-efficiency GaAs PIN solar cells, J. Comput. Electron. 20 (2021) 310–316.
Google Scholar
[14]
G. San Vicente, A. Morales, N. Germán, S. Suarez, B. Sánchez, SiO2/TiO2 Antireflective Coatings with Photocatalytic Properties Prepared by Sol–Gel for Solar Glass Covers, J. Sol. Energy Eng. 134 (2012).
DOI: 10.1115/1.4007298
Google Scholar
[15]
C. Lavieja, L. Oriol, J.-I. Peña, Creation of Superhydrophobic and Superhydrophilic Surfaces on ABS Employing a Nanosecond Laser, Materials. 11 (2018) 2547.
DOI: 10.3390/ma11122547
Google Scholar
[16]
R. Khan, H. Ali-Löytty, J. Saari, M. Valden, A. Tukiainen, K. Lahtonen, N.V. Tkachenko, Optimization of Photogenerated Charge Carrier Lifetimes in ALD Grown TiO2 for Photonic Applications, Nanomaterials. 10 (2020) 1567.
DOI: 10.3390/nano10081567
Google Scholar
[17]
R. Khan, S. Javed, A. Riaz, M. Rabeel, M.A. Akram, Study on Morphology of TiO2 Nanostructures synthesized under Microwave Irradiation and Their Application in Visible Light Photocatalysis, in: 2019 16th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST (2019) 86–91.
DOI: 10.1109/ibcast.2019.8667107
Google Scholar