[1]
Sonal B, Meena M, Shirish V D. Alkali-Activated Slag/Fly Ash Concrete: Mechanism, Properties, Hydration Product and Curing Temperature[J]. International Journal of Innovative Technology and Exploring Engineering, 2020, 9(9):204-215.
DOI: 10.35940/ijitee.i7005.079920
Google Scholar
[2]
Kranthi V S,Jagadeeswari K, Lal M S, et al. Stiffness determination of alkali activated ground granulated blast furnace slag based geo-polymer concrete[J]. Materials Today: Proceedings, (2020).
DOI: 10.1016/j.matpr.2020.10.775
Google Scholar
[3]
Türker H T, Balikanli M, Durmu B H , et al. Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level[J]. Construction and Building Materials, 2016, 104:169-180.
DOI: 10.1016/j.conbuildmat.2015.12.070
Google Scholar
[4]
Lee N K , Lee H K . Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste[J]. Cement and Concrete Composites, 2016, 72:168-179.
DOI: 10.1016/j.cemconcomp.2016.06.004
Google Scholar
[5]
Sturm P , Gluth G , Jäger C , et al. Sulfuric acid resistance of one-part alkali-activated mortars[J]. Cement and Concrete Research, 2018, 109:54-63.
DOI: 10.1016/j.cemconres.2018.04.009
Google Scholar
[6]
Li Z M, Lu T S, Chen Y, et al. Prediction of the autogenous shrinkage and microcracking of alkali-activated slag and fly ash concrete[J]. Cement and Concrete Composites, 2021, 117:103913.
DOI: 10.1016/j.cemconcomp.2020.103913
Google Scholar
[7]
Provis J L . Alkali-activated materials[J]. Cement and Concrete Research, 2017, 114:40-48.
Google Scholar
[8]
Cui D, Zuo X B, Zheng K , et al. Tomography-Based Investigation on the Carbonation Behavior through the Surface-Opening Cracks of Sliced Paste Specimen[J]. Materials, 2020, 13(8):1804.
DOI: 10.3390/ma13081804
Google Scholar
[9]
Latham S , Varslot T . Image registration: Enhancing and calibrating X-ray micro-CT imaging[J]. Imaging Society of Core Analysts Paper , 2008, 35:1-12.
Google Scholar
[10]
Cui D, Sun W, Banthia N. Use of tomography to understand the influence of preconditioning on carbonation tests in cement-based materials[J]. Cement and Concrete Composites, 2018, 88:52-63.
DOI: 10.1016/j.cemconcomp.2018.01.011
Google Scholar
[11]
Cui D, Banthia N, Wang Q , et al. Investigation on porosity of partly carbonated paste specimens blended with fly ash through dual CT scans[J]. Construction and Building Materials, 2019, 196:692-702.
DOI: 10.1016/j.conbuildmat.2018.11.156
Google Scholar
[12]
Chang C F , Chen J W . The experimental investigation of concrete carbonation depth[J]. Cement and Concrete Research, 2006, 36(9):1760-1767.
DOI: 10.1016/j.cemconres.2004.07.025
Google Scholar
[13]
Galan I , Andrade C , Castellote M . Natural and accelerated CO2 binding kinetics in cement paste at different relative humidities[J]. Cement and Concrete Research, 2014, 49(7):21–28.
DOI: 10.1016/j.cemconres.2013.03.009
Google Scholar
[14]
Shi Z G, Shi C J, Wan S. Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars[J]. Cement and Concrete Research, 2018, 113:55-64.
DOI: 10.1016/j.cemconres.2018.07.005
Google Scholar
[15]
Kim G M, Jang J G , Naeem F, et al. Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash[J]. International Journal of Concrete Structures and Materials, 2015, 9(3):283-294.
DOI: 10.1007/s40069-015-0111-x
Google Scholar
[16]
Thiery M, Villain G, Dangla P, et al. Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics[J]. Cement and Concrete Research, 2007, 37(7):1047-1058.
DOI: 10.1016/j.cemconres.2007.04.002
Google Scholar
[17]
Bernal S A , Provis J L , Walkley B , et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation[J]. Cement and Concrete Research, 2013, 53:127-144.
DOI: 10.1016/j.cemconres.2013.06.007
Google Scholar