Stabilization of Tropical Residual Soil with Cement and Biomass Bottom Ash

Article Preview

Abstract:

This paper investigates an experimental study of cement-stabilized lateritic soil (CSLS) for road construction. The investigation focused on the mechanical properties and the potential of using biomass bottom ash (BBA) as aggregate materials based on the soil-cement standard of Thailand. CSLS specimens were prepared with different contents of BBA (40%, 60%, 80%, and 100%) and hydraulic cement (3%, 5%, and 7%). A series of unconfined compression tests were carried out to present the strength development of the mixtures. The strength development index value indicated the feasibility of using BBA as aggregate materials with the replacement of the lateritic soil (LS) mass by 60% or more. The replacement of LS by BBA of 80% with 5% cement for soil-cement subbase, and 7% cement for soil-cement base courses, is recommended.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-189

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.G. Fookes: Tropical Residual Soils: A Geological Society Engineering Group (Geological Society of London, England 1997).

Google Scholar

[2] S. Horpibulsuk, W. Katkan, W. Sirilerdwattana and R. Rachan: Soils Found. Vol. 46(3) (2006), p.351–366.

DOI: 10.3208/sandf.46.351

Google Scholar

[3] S. Caro, J.P. Agudelo, B. Caicedo, L.F. Orozco, F. Patiño and N. Rodado:. Int. J. Pavement Eng. Vol. 20 (2018), p.1425–1434.

DOI: 10.1080/10298436.2018.1430893

Google Scholar

[4] N.A. Wahab, M.J. Roshan, A.S.A. Rashid, M.A. Hezmi, S.N. Jusoh, N.D. Nik Norsyahariati and S. Tamassoki: Sustainability. Vol. 13(11): 6430 (2021).

DOI: 10.3390/su13116430

Google Scholar

[5] A. Eisazadeh, K.A. Kassim and H. Nur: Environ. Earth Sci. Vol. 63 (2011), p.1057–1066.

Google Scholar

[6] N. Yoobanpot, P. Jamsawang, P. Simarat, J. Pornkasem and S. Likitlersuang: J. Soils Sediments. Vol. 20 (2020), p.3807–3823.

DOI: 10.1007/s11368-020-02635-x

Google Scholar

[7] A. Sharma and R. Ramkrishnan: Perspect. Sci. Vol. 8 (2016), p.198–202.

Google Scholar

[8] L.S. Hasriana, M.N. Djide and T. Harianto: Int. J. Geomate. Vol. 15 (2018), p.114–120.

Google Scholar

[9] A.S.A. Rashid, N. Latifi, C.L. Meehan and K.N. Manahiloh: Geotech. Geol. Eng. Vol. 35 (2017), p.2613–2623.

DOI: 10.1007/s10706-017-0265-1

Google Scholar

[10] A.S.A. Rashid, S. Tabatabaei, S. Horpibulsuk, N.Z.M. Yunus and W.H.W. Hassan:  Geotech. Geol. Eng. Vol. 37 (2019), p.5533–5541.

DOI: 10.1007/s10706-019-00944-8

Google Scholar

[11] C.J. Lynn, G.S. Ghataora and R.K. Dhir OBE: Int. J. Pavement Res. Tech. Vol. 10 (2017), p.185–201.

Google Scholar

[12] Y. Lu, A. Tian, J. Zhang, Y. Tang, P. Shi, Q. Tang and Y. Huang: Adv. Civ. Eng. Vol. 2020: 8886134.

Google Scholar

[13] ASTM Standard C618, West Conshohocken, USA. (2012).

Google Scholar

[14] ASTM Standard C1157, West Conshohocken, USA. (2015).

Google Scholar

[15] A. Iyayuk, Promputthangkoon. P and A. Lukjan: Infrastructures. Vol. 7(66) (2022).

Google Scholar

[16] ASTM Standard C1557, West Conshohocken, USA. (2017).

Google Scholar

[17] DH-S Standards for Highway Construction, Thailand. (1990). (in Thai).

Google Scholar

[18] ASTM Standard D2166, West Conshohocken, USA. (2016).

Google Scholar

[19] A. Bhurtel and A. Eisazadeh: KSCE J. Civ. Eng. Vol. 24(2) (2020), p.404–411.

Google Scholar