[1]
E. L. Omairey, Y. Zhang, F. Gu, T. Ma, P. Hu y R. Lou, «Rheological and fatigue characterisation of bitumen modified by anti-ageing compounds,» Construction and Building Materials, vol. 265, nº 120307, (2020).
DOI: 10.1016/j.conbuildmat.2020.120307
Google Scholar
[2]
R. N. Hunter, A. Self y J. Read, The Shell Bitumen Handbook, 6a ed., Londres: ICE: publishing, (2015).
Google Scholar
[3]
H. Soenen, X. Lu y O. V. Laukkanen, «Oxidation of bitumen: molecular and influence on rheological properties,» Rheol Acta, vol. 55, pp.315-326, (2016).
DOI: 10.1007/s00397-016-0919-6
Google Scholar
[4]
C. Rossi, P. Caputo, S. Ashimova, A. Fabozzi, G. D´Errico y R. Angelico, «Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation,» Applied Sciences , vol. 8, nº 8, p.1405, (2018).
DOI: 10.3390/app8081405
Google Scholar
[5]
B. Hofko, A. Cannone Falchetto, J. Grenfell , L. Huber, X. Lu, L. Porot, D. Poulikakos y Z. You, «Effects of short-term ageing temperature on bitumen properties,» Road Materials and Pavement Design, vol. 12, nº 8, pp.108-117, (2017).
DOI: 10.1080/14680629.2017.1304268
Google Scholar
[6]
O. Laukkanen , H. Soenen, H. H. Winter y J. Seppälä, «Low-temperature rheological and morphological characterization of SBS modified bitumen,» Construction and Building Materials, vol. 179, pp.348-359, (2018).
DOI: 10.1016/j.conbuildmat.2018.05.160
Google Scholar
[7]
D. Wang, Z. Cai, Z. Zhang, X. Xu y H. Yu, «Laboratory Investigation of Lignocellulosic Biomass as Performance Improver for Bituminous materials,» Polymers, vol. 11, nº 8, p.1253, (2019).
DOI: 10.3390/polym11081253
Google Scholar
[8]
A. Calabi, G. Thenoux, G. Sandoval y G. Valdés, «Orujo de uva post proceso de vinificación, una alternativa para mejorar la durabilidad de los pavimentos asfálticos,» Revista Científico Tecnológica Departamento Ingeniería de Obras Civiles, vol. 3, pp.19-27, (2013).
Google Scholar
[9]
Y. Zhang, X. Liu, P. Apostolidis, W. Gard, M. Van De Ven, S. Erkens y R. Jing, «Chemical and Rheological Evaluation of Aged Lignin-Modified Bitumen,» MDPI, vol. 12, nº 4176, (2019).
DOI: 10.3390/ma12244176
Google Scholar
[10]
C. Pacheco, C. Bustos, G. Reyes, M. Aguayo y O. Rojas, «Characterization of Residues from Chilean Blueberry Bushes: A Potential Source of Cellulose,» Bioresources, vol. 13, nº 4, pp.7345-7359, (2018).
DOI: 10.15376/biores.13.4.7345-7359
Google Scholar
[11]
D. Pinochet, V. Artacho y A. Maraboli , Manual de Fertilización de Arándanos Cultivados en el Sur de Chile, Valdivia , (2014).
Google Scholar
[12]
Y. Bellatrache, L. Ziyani, A. Dony, M. Taki y S. Haddani, «Effects of the addition of date palm fiber on the physical, rheological and thermal properties of bitumen,» Construction and Building Material, vol. 239, p.117808, (2020).
DOI: 10.1016/j.conbuildmat.2019.117808
Google Scholar
[13]
T. Geckil, P. Ahmedzade y T. Alatas, «Effects of carbon black on the high and low temperature properties of bitumen,» International Journal of Civil Engineering, vol. 16, pp.207-2018, (2018).
DOI: 10.1007/s40999-016-0120-4
Google Scholar
[14]
L. Cheng, J. Yu, Q. Zhao, J. Wu y L. Zhang, «Chemical, rheological and aging characteristics properties of Xinjiang rock asphalt-modified bitumen,» Construction and Building Materials, vol. 240, p.117908, (2020).
DOI: 10.1016/j.conbuildmat.2019.117908
Google Scholar
[15]
D. Ganter, T. Mielke, M. Maier y D. Lupascu, «Bitumen rheology and the impact of rejuvenators,» Construction and Building Materials, vol. 222, pp.414-423, (2019).
DOI: 10.1016/j.conbuildmat.2019.06.177
Google Scholar