Effect of Cold Work, Ageing on Hardness and Ultimate Tensile Strength of Microalloyed Steel

Article Preview

Abstract:

Recent past witnessed the widespread use of High Strength Low Alloy steels in several structural applications, including pressure vessels, line-pipe transportation of crude oil in the oil industry and many more. API X-65 grade is widely used as a promising material for line-pipe applications in the oil industry. HSLA X-65 plate steels are produced by normalising, Controlled Rolling (CR), Direct Quenching & Tempering (DQT) or Quenching & Tempering (Q&T) techniques. These steels are characterised by their low carbon concentration while maintaining low alloy additions. Micro alloy additions such as V, Ti, and Nb provide substantial precipitation strengthening effect. Strengthening, hardness and microstructural examinations are conducted in all the stages to ascertain X-65 HSLA steel's ageing behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-123

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. G. Hillenbrand, M. Graf and C. Kalwa, Niobium Science & Technology. Proceedings of the Int. Symp. Niobium 2001, TMS (2001), p.543.

Google Scholar

[2] C. Kalwa, H. G. Hillenbrand and M. Graf, Proceedings of the Onshore Pipeline Conference, EUROPIPE (2002), p.1.

Google Scholar

[3] H. G. Hillenbrand and C. Kalwa, Proceedings of the International Conference on Application and Evaluation of High Grade Linepipes, in Hostile Environments, EUROPIPE, 2002(a), p.1.

Google Scholar

[4] H. G. Hillenbrand and C. Kalwa, World Pipelines, 2002 (b), pp.1-10.

Google Scholar

[5] J. M. Gray, Proceedings of the API-X80 Pipeline Cost, Workshop ITI (2003), p.1.

Google Scholar

[6] M. Graf, H. G. Hillenbrand, C. J. Heckmann and K. A. Niederhoff, Proceedings of the 13thInternational Offshore and Polar Engineering Conference, EUROPIPE, PMid, 2003, p.97.

Google Scholar

[7] L. Li and L. Xu, Handbook of Mechanical Alloy Design, Marcel Dekker, Inc; PMCid: PMC3090257, 2004, p.249.

Google Scholar

[8] S. Bai, W. Xiao, W. Niu, Li D. Liang, Microstructure and Mechanical Properties of a Medium-Mn Steel with 1.3 GPa-Strength and 40%-Ductility, Materials 2021, 14, 2233. https://doi.org/10.3390/ma14092233.

DOI: 10.3390/ma14092233

Google Scholar

[9] M. J. Gray and F. Siciliano, High Strength Mcroalloyed Linepipe: Half a Century of Evolution, Proceedings, Pipeline Technology Meeting, Oostende, October 2009, pp.20-45.

Google Scholar

[10] F. Barbaro, L. Fletcher, C. Dinnis, J. Piper and J. M. P. Gray, Proceedings of the 18thJTM on Pipeline Research, PRCI/AFIA/EPRG, 2011, p.1.

Google Scholar

[11] B. Mintz, S. Yoo and J. J. Jonas, Int. Mater. Rev., 36, (1991), p.187.

Google Scholar

[12] I. Mileti´c, A. Ili´c, R. R. Nikoli´c, R. Ulewicz, L. Ivanovi´c and N. Sczygiol, Analysis of Selected Properties of Welded Joints of the HSLA Steels, Materials 2020, 13, p.1301.

DOI: 10.3390/ma13061301

Google Scholar

[13] R. Branco and F. Berto, Mechanical Behavior of High-Strength, Low-Alloy Steels, Metals 2018, 8, p.610.

DOI: 10.3390/met8080610

Google Scholar

[14] C. Kumar, S. Majumdar, R. Biswas, G. Ragul, P. E. Prakash, J. Dehesinghraja, Study On Elastic- Plastic Behaviour of En 43 B (Aisi 1042) Hsla Steel, International Journal of Pure and Applied Mathematics, Volume 119 No. 12, 2018, pp.15801-15811.

Google Scholar

[15] R. A. Fard, & M. Kazeminezhad, Effect of electropulsing on microstructure and hardness of cold-rolled low carbon steel, Journal of Materials Research and Technology, 8(3), 2019, 3114–3125.

DOI: 10.1016/j.jmrt.2019.02.023

Google Scholar

[16] F.B. Pickering, M. Korchynski, S. Gorczyca, and M. Blicharski, In Microalloyed Vanadium Steels, eds., Association of Polish Metallurgical Engineers, Cracow, Poland, (1990), p.79–104.

Google Scholar

[17] L. J. Cuddy and J.C. Raley, Austenite grain coarsening in microalloyed steels, Metall Mater Trans A 14, 1983, p.1989–1995. https://doi.org/10.1007/BF02662366.

DOI: 10.1007/bf02662366

Google Scholar

[18] Union Carbide Corporation. Metals Division, Micoallying 75, proceedings of International Symposium on High-strength, low-alloy steels, October 1-3, Washington D. C., (1975).

Google Scholar

[19] S. Panwar, D. B. Goel, O. P. Pandey and K. S. Prasad, Aging of a copper bearing HSLA-100 steel, Bull. Mater. Sci. 26, 2003, p.441–447.

DOI: 10.1007/bf02711190

Google Scholar

[20] S. Panwar, D. B. Goel and O. P. Pandey, Effect of cold work and aging on mechanical properties of a copper bearing HSLA-100 steel, Bull. Mater. Sci. 28, 2005, pp.259-265.

DOI: 10.1007/bf02711258

Google Scholar

[21] S. Panwar, D. B. Goel, O. P. Pandey and K. S. Prasad, Effect of microalloying on aging of a Cu-bearing HSLA-100 (GPT) steel, Bull. Mater. Sci., Vol. 29, No. 3, June 2006, p.281–292.

DOI: 10.1007/bf02706498

Google Scholar

[22] S. Panwar, D. B. Goel and O. P. Pandey, Effect of cold work and aging on mechanical properties of a copper bearing microalloyed HSLA-100 (GPT) steel, Bull. Mater. Sci., Vol. 30, No. 2, April 2007, pp. p.73–79.

DOI: 10.1007/s12034-007-0013-x

Google Scholar

[23] S. G. Hong, K. B. Kang and C. G. Par, Strain-induced precipitation of NbC in Nb and Nb–Ti microalloyed HSLA steels, Scripta Mater, 46, 2002, p.163–168.

DOI: 10.1016/s1359-6462(01)01214-3

Google Scholar

[24] N. B. Garg and A. Garg, J. Phys.: Conf. Ser. 2070 012174, 2021, pp.1-8.

Google Scholar

[25] A. Ghosh, B. Mishra, S. Das and S. Chatterjee, Structure and properties of a low carbon Cu bearing high strength steel, Mater. Sci. Eng. A, 396, 2005, pp.320-332.

DOI: 10.1016/j.msea.2005.01.050

Google Scholar

[26] Y. S. Ko, J. W. Park, H. Park, J. D. Lim and D. K. Matlock, Application of High Strength Microalloyed Steel in a New Automotive Crankshaft, in the proceedings of New Developments in Long and Forged Products, 2006, pp.1-10.

Google Scholar

[27] S. K. Ghosh, S. Ganguly, P. Pal., A. Haldar and P. P. Chattopadhyay, Cu – Ni - Ti – B Multiphase Steel, in Proceedings of International Conference on Microalloyed Steels: Emerging Technologies and Applications, Kolkata, 2007, p.269 – 280.

Google Scholar

[28] Yu. Z. Babaskin and S. Ya. Shipitsyn, Microalloying of Structural Steel with Nitride-Forming Elements, Steel in Translation 39, No. 12, 2009, pp.1119-1121 © Allerton Press, Inc.

DOI: 10.3103/s0967091209120201

Google Scholar

[29] A.L.C. Silva and P. R. Mei, Steels and Special Alloys (Aose Ligas Especiais), 3rded., Edgard Blucher, Sao Paulo, (2010).

Google Scholar

[30] A. P. A. Cunha, R. L. Villas Boas, S.T. Fonseca and P. R. Mei, Effect of Microalloying on Structure and Properties of Hot Rolled 0.5 %C Steel, in Journal of Metallurgical Engineering (ME), Volume 2 Issue 2, 2013, pp.55-60.

Google Scholar

[31] F.B Pickering, Constitution and Properties of Steel, Materials Science and TechnologyVol., 7, VCH, p.335.

Google Scholar

[32] F. B. Pickering, Microalloying '75, International Symposium on HSLA Steels, Union Carbide Corp., New York, 1977, pp.9-31.

Google Scholar

[33] M. T. Miglin, J. P. Hirth and A. R. Rosenfield, Metall. Trans. 14A, 1983, pp.2055-2061.

Google Scholar

[34] N. J. Kim, A. J. Yang and G. Thomas, Effect of finish rolling temperature on the structure and properties of directly quenched nb containing low carbon steel, Metallurgical Transactions A, Vol 16, 1985, p.471–474.

DOI: 10.1007/bf02814349

Google Scholar

[35] C. Krishna, S. Srinath, J. Jha, A.K. et al., Effect of Heat Treatment on Microstructure and Mechanical Properties of 12Cr–10Ni–0.25Ti–0.7Mo Stainless Steel, Metallogr. Microstruct. Anal. 2,  (2013), p.234–241. https://doi.org/10.1007/s13632-013-0079-3.

DOI: 10.1007/s13632-013-0079-3

Google Scholar

[36] H. Singh, A. K. Singh, Z. A. Hyderi, M. K. Banerjee, Precipitation Behaviour of Low Carbon Microalloyed Steel, IOP Conf. Series: Materials Science and Engineering, 1104, 2021, pp.1-11.

DOI: 10.1088/1757-899x/1104/1/012039

Google Scholar

[37] T. Xiao, XF. Sheng, Q. Lei, et al., Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys, Acta Metall. Sin. (Engl. Lett.) 33, 375–384, 2020. https://doi.org/10.1007/s40195-019-00953-9.

DOI: 10.1007/s40195-019-00953-9

Google Scholar

[38] F. Huang, J. Chen, Ge. Zhangqi, Li, Junliang, W. Yongqiang, Effect of Heat Treatment on Microstructure and Mechanical Properties of New Cold-Rolled Automotive Steels, Metals 10, no. 11: 1414, 2020. https://doi.org/10.3390/met10111414.

DOI: 10.3390/met10111414

Google Scholar

[39] M. T. Miglin, J. P. Hirth, A. R. Rosenfield and W. A. T. Clark, Microstructure of a Quenched and Tempered Cu-Bearing High-Strength Low-Alloy Steel, Metallurgical Transactions A, 1986, pp.791-798.

DOI: 10.1007/bf02643854

Google Scholar

[40] J. R. Paules, Developments in HSLA steel products, JOM, 1991, pp.41-44.

DOI: 10.1007/bf03220117

Google Scholar

[41] S. Das, A. Ghosh, S. Chatterjee and P. R. Rao, The effect of cooling rate on structure and properties of a HSLA forging, Scripta Materialia, Vol. 48, Issue 1, 2003, pp.51-57.

DOI: 10.1016/s1359-6462(02)00345-7

Google Scholar

[42] A. Ghosh, S. Das, S. Chatterjee, B. Mishra and P. R. Rao, Influence of thermo-mechanical processing and different post-cooling techniques on structure and properties of an ultra-low carbon Cu bearing HSLA forging, Materials Science and Engineering: A, Vol. 348, Issues 1–2, 2003, pp.299-308.

DOI: 10.1016/s0921-5093(02)00735-9

Google Scholar

[43] D. Raabe, B. Sun, D. S. Kwiatkowski, A. et al., Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels, Metall Mater Trans A 51, (2020), p.5517–5586. https://doi.org/10.1007/s11661-020-05947-2.

Google Scholar

[44] M. Ahssi, M. A. Erden, M. Acarer, & H. Çuğ, The Effect of Nickel on the Microstructure, Mechanical Properties and Corrosion Properties of Niobium-Vanadium Microalloyed Powder Metallurgy Steels, Materials (Basel, Switzerland), 13(18), 2020, p.4021. https://doi.org/10.3390/ma13184021.

DOI: 10.3390/ma13184021

Google Scholar