[1]
H. G. Hillenbrand, M. Graf and C. Kalwa, Niobium Science & Technology. Proceedings of the Int. Symp. Niobium 2001, TMS (2001), p.543.
Google Scholar
[2]
C. Kalwa, H. G. Hillenbrand and M. Graf, Proceedings of the Onshore Pipeline Conference, EUROPIPE (2002), p.1.
Google Scholar
[3]
H. G. Hillenbrand and C. Kalwa, Proceedings of the International Conference on Application and Evaluation of High Grade Linepipes, in Hostile Environments, EUROPIPE, 2002(a), p.1.
Google Scholar
[4]
H. G. Hillenbrand and C. Kalwa, World Pipelines, 2002 (b), pp.1-10.
Google Scholar
[5]
J. M. Gray, Proceedings of the API-X80 Pipeline Cost, Workshop ITI (2003), p.1.
Google Scholar
[6]
M. Graf, H. G. Hillenbrand, C. J. Heckmann and K. A. Niederhoff, Proceedings of the 13thInternational Offshore and Polar Engineering Conference, EUROPIPE, PMid, 2003, p.97.
Google Scholar
[7]
L. Li and L. Xu, Handbook of Mechanical Alloy Design, Marcel Dekker, Inc; PMCid: PMC3090257, 2004, p.249.
Google Scholar
[8]
S. Bai, W. Xiao, W. Niu, Li D. Liang, Microstructure and Mechanical Properties of a Medium-Mn Steel with 1.3 GPa-Strength and 40%-Ductility, Materials 2021, 14, 2233. https://doi.org/10.3390/ma14092233.
DOI: 10.3390/ma14092233
Google Scholar
[9]
M. J. Gray and F. Siciliano, High Strength Mcroalloyed Linepipe: Half a Century of Evolution, Proceedings, Pipeline Technology Meeting, Oostende, October 2009, pp.20-45.
Google Scholar
[10]
F. Barbaro, L. Fletcher, C. Dinnis, J. Piper and J. M. P. Gray, Proceedings of the 18thJTM on Pipeline Research, PRCI/AFIA/EPRG, 2011, p.1.
Google Scholar
[11]
B. Mintz, S. Yoo and J. J. Jonas, Int. Mater. Rev., 36, (1991), p.187.
Google Scholar
[12]
I. Mileti´c, A. Ili´c, R. R. Nikoli´c, R. Ulewicz, L. Ivanovi´c and N. Sczygiol, Analysis of Selected Properties of Welded Joints of the HSLA Steels, Materials 2020, 13, p.1301.
DOI: 10.3390/ma13061301
Google Scholar
[13]
R. Branco and F. Berto, Mechanical Behavior of High-Strength, Low-Alloy Steels, Metals 2018, 8, p.610.
DOI: 10.3390/met8080610
Google Scholar
[14]
C. Kumar, S. Majumdar, R. Biswas, G. Ragul, P. E. Prakash, J. Dehesinghraja, Study On Elastic- Plastic Behaviour of En 43 B (Aisi 1042) Hsla Steel, International Journal of Pure and Applied Mathematics, Volume 119 No. 12, 2018, pp.15801-15811.
Google Scholar
[15]
R. A. Fard, & M. Kazeminezhad, Effect of electropulsing on microstructure and hardness of cold-rolled low carbon steel, Journal of Materials Research and Technology, 8(3), 2019, 3114–3125.
DOI: 10.1016/j.jmrt.2019.02.023
Google Scholar
[16]
F.B. Pickering, M. Korchynski, S. Gorczyca, and M. Blicharski, In Microalloyed Vanadium Steels, eds., Association of Polish Metallurgical Engineers, Cracow, Poland, (1990), p.79–104.
Google Scholar
[17]
L. J. Cuddy and J.C. Raley, Austenite grain coarsening in microalloyed steels, Metall Mater Trans A 14, 1983, p.1989–1995. https://doi.org/10.1007/BF02662366.
DOI: 10.1007/bf02662366
Google Scholar
[18]
Union Carbide Corporation. Metals Division, Micoallying 75, proceedings of International Symposium on High-strength, low-alloy steels, October 1-3, Washington D. C., (1975).
Google Scholar
[19]
S. Panwar, D. B. Goel, O. P. Pandey and K. S. Prasad, Aging of a copper bearing HSLA-100 steel, Bull. Mater. Sci. 26, 2003, p.441–447.
DOI: 10.1007/bf02711190
Google Scholar
[20]
S. Panwar, D. B. Goel and O. P. Pandey, Effect of cold work and aging on mechanical properties of a copper bearing HSLA-100 steel, Bull. Mater. Sci. 28, 2005, pp.259-265.
DOI: 10.1007/bf02711258
Google Scholar
[21]
S. Panwar, D. B. Goel, O. P. Pandey and K. S. Prasad, Effect of microalloying on aging of a Cu-bearing HSLA-100 (GPT) steel, Bull. Mater. Sci., Vol. 29, No. 3, June 2006, p.281–292.
DOI: 10.1007/bf02706498
Google Scholar
[22]
S. Panwar, D. B. Goel and O. P. Pandey, Effect of cold work and aging on mechanical properties of a copper bearing microalloyed HSLA-100 (GPT) steel, Bull. Mater. Sci., Vol. 30, No. 2, April 2007, pp. p.73–79.
DOI: 10.1007/s12034-007-0013-x
Google Scholar
[23]
S. G. Hong, K. B. Kang and C. G. Par, Strain-induced precipitation of NbC in Nb and Nb–Ti microalloyed HSLA steels, Scripta Mater, 46, 2002, p.163–168.
DOI: 10.1016/s1359-6462(01)01214-3
Google Scholar
[24]
N. B. Garg and A. Garg, J. Phys.: Conf. Ser. 2070 012174, 2021, pp.1-8.
Google Scholar
[25]
A. Ghosh, B. Mishra, S. Das and S. Chatterjee, Structure and properties of a low carbon Cu bearing high strength steel, Mater. Sci. Eng. A, 396, 2005, pp.320-332.
DOI: 10.1016/j.msea.2005.01.050
Google Scholar
[26]
Y. S. Ko, J. W. Park, H. Park, J. D. Lim and D. K. Matlock, Application of High Strength Microalloyed Steel in a New Automotive Crankshaft, in the proceedings of New Developments in Long and Forged Products, 2006, pp.1-10.
Google Scholar
[27]
S. K. Ghosh, S. Ganguly, P. Pal., A. Haldar and P. P. Chattopadhyay, Cu – Ni - Ti – B Multiphase Steel, in Proceedings of International Conference on Microalloyed Steels: Emerging Technologies and Applications, Kolkata, 2007, p.269 – 280.
Google Scholar
[28]
Yu. Z. Babaskin and S. Ya. Shipitsyn, Microalloying of Structural Steel with Nitride-Forming Elements, Steel in Translation 39, No. 12, 2009, pp.1119-1121 © Allerton Press, Inc.
DOI: 10.3103/s0967091209120201
Google Scholar
[29]
A.L.C. Silva and P. R. Mei, Steels and Special Alloys (Aose Ligas Especiais), 3rded., Edgard Blucher, Sao Paulo, (2010).
Google Scholar
[30]
A. P. A. Cunha, R. L. Villas Boas, S.T. Fonseca and P. R. Mei, Effect of Microalloying on Structure and Properties of Hot Rolled 0.5 %C Steel, in Journal of Metallurgical Engineering (ME), Volume 2 Issue 2, 2013, pp.55-60.
Google Scholar
[31]
F.B Pickering, Constitution and Properties of Steel, Materials Science and TechnologyVol., 7, VCH, p.335.
Google Scholar
[32]
F. B. Pickering, Microalloying '75, International Symposium on HSLA Steels, Union Carbide Corp., New York, 1977, pp.9-31.
Google Scholar
[33]
M. T. Miglin, J. P. Hirth and A. R. Rosenfield, Metall. Trans. 14A, 1983, pp.2055-2061.
Google Scholar
[34]
N. J. Kim, A. J. Yang and G. Thomas, Effect of finish rolling temperature on the structure and properties of directly quenched nb containing low carbon steel, Metallurgical Transactions A, Vol 16, 1985, p.471–474.
DOI: 10.1007/bf02814349
Google Scholar
[35]
C. Krishna, S. Srinath, J. Jha, A.K. et al., Effect of Heat Treatment on Microstructure and Mechanical Properties of 12Cr–10Ni–0.25Ti–0.7Mo Stainless Steel, Metallogr. Microstruct. Anal. 2, (2013), p.234–241. https://doi.org/10.1007/s13632-013-0079-3.
DOI: 10.1007/s13632-013-0079-3
Google Scholar
[36]
H. Singh, A. K. Singh, Z. A. Hyderi, M. K. Banerjee, Precipitation Behaviour of Low Carbon Microalloyed Steel, IOP Conf. Series: Materials Science and Engineering, 1104, 2021, pp.1-11.
DOI: 10.1088/1757-899x/1104/1/012039
Google Scholar
[37]
T. Xiao, XF. Sheng, Q. Lei, et al., Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys, Acta Metall. Sin. (Engl. Lett.) 33, 375–384, 2020. https://doi.org/10.1007/s40195-019-00953-9.
DOI: 10.1007/s40195-019-00953-9
Google Scholar
[38]
F. Huang, J. Chen, Ge. Zhangqi, Li, Junliang, W. Yongqiang, Effect of Heat Treatment on Microstructure and Mechanical Properties of New Cold-Rolled Automotive Steels, Metals 10, no. 11: 1414, 2020. https://doi.org/10.3390/met10111414.
DOI: 10.3390/met10111414
Google Scholar
[39]
M. T. Miglin, J. P. Hirth, A. R. Rosenfield and W. A. T. Clark, Microstructure of a Quenched and Tempered Cu-Bearing High-Strength Low-Alloy Steel, Metallurgical Transactions A, 1986, pp.791-798.
DOI: 10.1007/bf02643854
Google Scholar
[40]
J. R. Paules, Developments in HSLA steel products, JOM, 1991, pp.41-44.
DOI: 10.1007/bf03220117
Google Scholar
[41]
S. Das, A. Ghosh, S. Chatterjee and P. R. Rao, The effect of cooling rate on structure and properties of a HSLA forging, Scripta Materialia, Vol. 48, Issue 1, 2003, pp.51-57.
DOI: 10.1016/s1359-6462(02)00345-7
Google Scholar
[42]
A. Ghosh, S. Das, S. Chatterjee, B. Mishra and P. R. Rao, Influence of thermo-mechanical processing and different post-cooling techniques on structure and properties of an ultra-low carbon Cu bearing HSLA forging, Materials Science and Engineering: A, Vol. 348, Issues 1–2, 2003, pp.299-308.
DOI: 10.1016/s0921-5093(02)00735-9
Google Scholar
[43]
D. Raabe, B. Sun, D. S. Kwiatkowski, A. et al., Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels, Metall Mater Trans A 51, (2020), p.5517–5586. https://doi.org/10.1007/s11661-020-05947-2.
Google Scholar
[44]
M. Ahssi, M. A. Erden, M. Acarer, & H. Çuğ, The Effect of Nickel on the Microstructure, Mechanical Properties and Corrosion Properties of Niobium-Vanadium Microalloyed Powder Metallurgy Steels, Materials (Basel, Switzerland), 13(18), 2020, p.4021. https://doi.org/10.3390/ma13184021.
DOI: 10.3390/ma13184021
Google Scholar