Submerged Friction Stir Back Extrusion of AZ31 Magnesium Alloy

Article Preview

Abstract:

Friction Stir Back Extrusion (FSBE) is a new grade of severe plastic deformation process capable of producing metallic tubular geometries that exhibit ultrafine grain structure and superior mechanical properties. FSBE of tubular sections provide opportunities for producing lightweight rigid structures for the automotive, aerospace and construction industries. This research investigates the effect of submerging conditions (in water at 25 °C and 2 °C) for Magnesium AZ31-B tubes on the grain size, mechanical properties, temperature history and power consumption. Submerged FSBE is compared to FSBE in air at fixed process parameters of 90 mm/min and 2000 rpm. It is shown that the impact of submerging is statistically insignificant in terms of the mechanical properties, ultimate tensile strength and percent elongation, of the produced tubes according to the conducted t-tests. On the other hand, the optical microscopy results indicated finer grains at the inner wall of the seamless tubes for FSBE in air and underwater FSBE at 25 °C when compared to underwater FSBE at 2 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-87

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. H. Saad, B. M. Darras, and M. A. Nazzal, Evaluation of Welding Processes Based on Multi-dimensional Sustainability Assessment Model,, International Journal of Precision Engineering and Manufacturing-Green Technology, 2020/01/21 (2020).

DOI: 10.1007/s40684-019-00184-4

Google Scholar

[2] M. A. Wahid, Z. A. Khan, and A. N. Siddiquee, Review on underwater friction stir welding: A variant of friction stir welding with great potential of improving joint properties,, Transactions of Nonferrous Metals Society of China, vol. 28, pp.193-219, 2018/02/01/ (2018).

DOI: 10.1016/s1003-6326(18)64653-9

Google Scholar

[3] M. A. Wahid, Z. A. Khan, A. N. Siddiquee, R. Shandley, and N. Sharma, Analysis of process parameters effects on underwater friction stir welding of aluminum alloy 6082-T6,, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 233, pp.1700-1710, 2019/05/01 (2018).

DOI: 10.1177/0954405418789982

Google Scholar

[4] B. Darras and E. Kishta, Submerged friction stir processing of AZ31 Magnesium alloy,, Materials & Design, vol. 47, pp.133-137, 2013/05/01/ (2013).

DOI: 10.1016/j.matdes.2012.12.026

Google Scholar

[5] O. Jarrah, Investigation of Friction Stir Back Extrusion,, Thesis, M.S.c, Mechanical Engineering, American University of Sharjah, (2019).

Google Scholar

[6] J. L. a. F. Abu-Farha, On The Manufacture Of Lightweight Alloy tubes Via Friction Stir Back Extrusion , ASME 2014 International Manufacturing Science and Engineering Conference vol. MSEC2014-4148, (2014).

DOI: 10.1115/msec2012-7358

Google Scholar

[7] M. Nazzal, F. Abu-Farha, and R. Curtis, Finite Element Simulations for Investigating the Effects of Specimen Geometry in Superplastic Tensile Tests,, Journal of Materials Engineering and Performance, vol. 20, pp.865-876, (2011).

DOI: 10.1007/s11665-010-9727-9

Google Scholar

[8] M. A. Nazzal, Stability analysis and finite element simulations of superplastic forming in the presence of hydrostatic pressure,, AIP Conference Proceedings, vol. 1957, p.050006, 2018/04/19 (2018).

DOI: 10.1063/1.5034336

Google Scholar

[9] M. A. Nazzal and A. G. Al Sabouni, The effects of pressure control technique on hot gas blow forming of Mg AZ31 sheets,, International Journal of Material Forming, vol. 12, pp.519-533, (2019).

DOI: 10.1007/s12289-018-1432-5

Google Scholar

[10] M. A. Nazzal and M. K. Khraisheh, The Effects of Stress State and Cavitation on Deformation Stability During Superplastic Forming,, Journal of Materials Engineering and Performance, vol. 16, pp.200-207, (2007).

DOI: 10.1007/s11665-007-9032-4

Google Scholar

[11] M. A. Nazzal and M. K. Khraisheh, Impact of Selective Grain Refinement on Superplastic Deformation: Finite Element Analysis,, Journal of Materials Engineering and Performance, vol. 17, pp.163-167, 2008/04/01 (2008).

DOI: 10.1007/s11665-007-9180-6

Google Scholar

[12] M. Nazzal and M. K. Khraisheh, Finite Element Modeling of Superplastic Forming in the Presence of Back Pressure,, Materials Science Forum, vol. 551-552, pp.257-262, (2007).

DOI: 10.4028/www.scientific.net/msf.551-552.257

Google Scholar

[13] A. K. S. Alan A. Luo, Mechanical Properties and Microstructure of AZ31 Magnesium Alloy Tubes,, in Essential Readings in Magnesium Technology, A. A. L. Suveen N. Mathaudhu, Neale R. Neelameggham, Eric A. Nyberg, Wim H. Sillekens, Ed., ed, 2014, pp.381-387.

DOI: 10.1002/9781118859803.ch61

Google Scholar

[14] D. Hasenpouth, Tensile High Strain Rate Behavior of AZ31B Magnesium Alloy Sheet,, ed: UWSpace, (2010).

Google Scholar

[15] M. K. Kulekci, Magnesium and its alloys applications in automotive industry,, The International Journal of Advanced Manufacturing Technology, vol. 39, pp.851-865, 2008/11/01 (2008).

DOI: 10.1007/s00170-007-1279-2

Google Scholar

[16] Z. Zeng, N. Stanford, C. H. J. Davies, J.-F. Nie, and N. Birbilis, Magnesium extrusion alloys: a review of developments and prospects,, International Materials Reviews, vol. 64, pp.27-62, 2019/01/02 (2019).

DOI: 10.1080/09506608.2017.1421439

Google Scholar

[17] M. Ahmadkhanbeigi, O. Shapourgan, and G. Faraji, Microstructure and Mechanical Properties of Al Tube Processed by Friction Stir Tube Back Extrusion (FSTBE),, Transactions of the Indian Institute of Metals, vol. 70, pp.1849-1856, 2017/09/01 (2017).

DOI: 10.1007/s12666-016-0987-4

Google Scholar

[18] M. H. Saad, M. A. Nazzal, and B. M. Darras, A general framework for sustainability assessment of manufacturing processes,, Ecological Indicators, vol. 97, pp.211-224, (2019).

DOI: 10.1016/j.ecolind.2018.09.062

Google Scholar

[19] M. H. Saad, O. M. Jarrah, M. A. Nazzal, B. M. Darras, and H. A. Kishawy, Sustainability-based evaluation of Friction Stir Back Extrusion of seamless tubular shapes,, Journal of Cleaner Production, p.121972, 2020/05/10/ (2020).

DOI: 10.1016/j.jclepro.2020.121972

Google Scholar

[20] F. Abu-Farha, A preliminary study on the feasibility of friction stir back extrusion,, Scripta Materialia, vol. 66, pp.615-618, 2012/05/01/ (2012).

DOI: 10.1016/j.scriptamat.2012.01.059

Google Scholar

[21] J. L. Milner and F. Abu-Farha, On the Manufacture of Lightweight Alloy Tubes via Friction Stir Back Extrusion: Process Evaluation and Material Performance,, p. V002T02A085, (2014).

DOI: 10.1115/msec2014-4148

Google Scholar

[22] -. G. Jamali, -. S. Nourouzi, and -. R. Jamaati, - Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process,, - Int. J. Miner. Metall. Mater., vol. - 26, pp. - 1005, - 2019-08-05 (2019).

DOI: 10.1007/s12613-019-1806-9

Google Scholar

[23] O. M. Jarrah, M. A. Nazzal, and B. M. Darras, Numerical modeling and experiments of Friction Stir Back Extrusion of seamless tubes,, CIRP Journal of Manufacturing Science and Technology, vol. 31, pp.165-177, 2020/11/01/ (2020).

DOI: 10.1016/j.cirpj.2020.11.001

Google Scholar

[24] A. Alhourani, M. Awad, M. A. Nazzal, and B. M. Darras, Optimization of friction stir back extrusion mechanical properties and productivity of magnesium AZ31-B seamless tubes,, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 235, pp.2143-2154, 2021/11/01 (2021).

DOI: 10.1177/09544054211014465

Google Scholar