Indigenous Production of Porous 316L through Powder Metallurgy and Investigation of their Mechanical Properties

Article Preview

Abstract:

Nowadays, 316L stainless steel implant materials exhibit a promising position in the field of biomaterials application, especially in medical due to their higher strength compared to other ceramic base materials. Therefore, in this work, the production of 316L implant materials and examination of the mechanical characteristics were carried out. Powder Metallurgy process has been chosen to produce the implant materials due to its high advantages in demonstrating the high mechanical properties of the green sample. 316L stainless steel with zinc streate powder of three different compositions, i.e., the first of 99% 316L stainless steel and 1% zinc stearate, the second of 97% 316L stainless steel and 3% zinc streate, and the third of 95% 316L stainless steel and 5% zinc streate, were cold pressed individually at 600 MPa pressure using UTM and sintered the green samples at 1120 °C for 1 hour and 30 minutes. Sintering temperature and time were the same for all the specimens. We investigated the mechanical behaviour of 316L stainless steel implant materials of different compositions at the same temperature for the same duration of time. After that, the mechanical properties and densification of this material were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-41

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.Long H.J. Rack, Titanium alloys in total joint replacement, Biomaterial,(1998), 19: 1621–1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[2] J.D. Dabrowski,Z. Oksiuta, Porous implantation material from vitalium alloy powder. Mater Eng, (2000), 4: 174–178.

Google Scholar

[3] R.M. Pilliar, P/M Processing of surgical implants: Sintered porous surfaces for tissue-to-implant fixation, Int. J P/M, (1998), 34: 33–45.

Google Scholar

[4] N.Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koc, Review of magnesium-based biomaterials and their applications, Journal of Magnesium and Alloys (2018). P 23–43.

DOI: 10.1016/j.jma.2018.02.003

Google Scholar

[5] L. A. Dobrzanski, Z. Brytan, M.A. Grande,M.Rosso,Properties of duplex stainless steels made by powder metallurgy,Archives of Materials Science and Engineering, (2007).

Google Scholar

[6] O.Coovattanachai, N.Tosangthum, M. Morakotjinda, et al. Performance improvement of P/M 316L by addition of liquid phase forming powder. Mater SciEng A, (2007), 445-446: 440–445.

DOI: 10.1016/j.msea.2006.09.105

Google Scholar

[7] J.Meng, N.H. Loh, B.Y. Tay et al.,Tribological behavior of 316L stainless steel fabricated by micro powder injection molding. Wear, (2010), 268: 1013–1019.

DOI: 10.1016/j.wear.2009.12.033

Google Scholar

[8] U. Lindstedt, B. Karlsson,Low cycle fatigue behaviour of a porous PM 316L austenitic stainless steel. (1998).

DOI: 10.1016/b978-008043326-4/50014-3

Google Scholar

[9] I. Özbek, B.A. Konduk, Bindal C, et al., Characterization of borided AISI 316L stainless steel implant. Vacuum, (2002), 65: 521–525.

DOI: 10.1016/s0042-207x(01)00466-3

Google Scholar

[10] M. Navarro, A. Michiardi, O. Castano, J.A. Planell, Biomaterials in orthopaedics, J.R. Soc. Interface, (2008)5, 1137-1158.

DOI: 10.1098/rsif.2008.0151

Google Scholar

[11] N. Jha, D.P. Mondal, J. DuttaMajumdar, A. Badkul, A.K. Jha, A.K. Khare, Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route, Mater. Design, 47 (2013) 810-819.

DOI: 10.1016/j.matdes.2013.01.005

Google Scholar

[12] M.H. Golabgir, R. Ebrahimi-Kahrizsangi, O. Torabi, A. Saatchi, Fabrication of open cell Fe-10%Al foam by space-holder technique, Arch. Metall. Mater., 59 (2014) 41-45.[11] S. Joshi, G.K. Gupta, Synthesis characterization of stainless steel foam via powder metallurgy taking acicular urea as space holder, Mater. Sci. Res. India., 12 (2015) 43-49.

DOI: 10.2478/amm-2014-0007

Google Scholar

[13] N. Tuncer, G. Arslan, Designing compressive properties of titanium foams,J. Mater Sci., (2009). 44, 1477–1484.

DOI: 10.1007/s10853-008-3167-z

Google Scholar

[14] M.Long H.J. Rrack, Tittanium alloys in total joint replacement-A materials science perspective. Biomaterials (1998),1621-1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[15] A.Laptev. M. Bram, H .P., Buchkremer,D.Stover., Study of production route for titanium parts combining very high porosity and complex shape, Powder Metallurgy, (2004), 47(1), 85-92.

DOI: 10.1179/003258904225015536

Google Scholar

[16] Thieme M., WietersK P, Bergner F, Scharnweber D, Worch H, Ndop J, Kim T J, Grill W. Titanium powder sintering for preparation of a porous functionally graded material designed for orthopedic implant[j],journal of material science, materials in medicine,2001, 225-231.

DOI: 10.4028/www.scientific.net/msf.308-311.374

Google Scholar

[17] Simmons C A, Valiquette N, Pilliar R M. Osseointegration of sintered porous-surfaced and plasma spray-coated implants: An animal model study of early post implantation healing response and mechanical stability [J]. J Biomed Mater Res, 1999, 47(2), 127-138.

DOI: 10.1002/(sici)1097-4636(199911)47:2<127::aid-jbm3>3.0.co;2-c

Google Scholar

[18] XIA Ren-long, LENG Yang, CHEN JI-yong, ZHANG Qi-yi, A comparative study of calcium phosphate formation on bio-ceramics in vitro and in vivo[J},Biomaterials,2005,5477-6486.

DOI: 10.1016/j.biomaterials.2005.04.028

Google Scholar

[19] Y.B. An, N.H. Oh, Y.W. Chun, Y.H. Kim, D.K. Kim, J.S. Park, J-J. Kwon, K.O. Choi, T.G. Eom, T.H. Byun, J.Y. Kim, P.J. Reucroft, K.J. Kim, W.H. Lee, Mechanical properties of environmental-electro-discharge-sintered porous Ti implants, Materials Letters, (2005) 2178-2182.

DOI: 10.1016/j.matlet.2005.02.059

Google Scholar

[20] Deng X, Piotrowski G B, Williams J J, Chawla N. Effect of porosity and tension-compression asymmetry on the Bauschinger effect in porous sintered steel[J],International journal of fatigue;2005, 1233-1243.

DOI: 10.1016/j.ijfatigue.2005.06.041

Google Scholar

[21] Lee W H, Hyun C Y, XPS, study of porous dental implants fabricated by electro-discharge-sintering of spherical Ti-6Al-4V in a Vacuum atmosphere, Applied surface science,2005,353: 4250-4256.

DOI: 10.1016/j.apsusc.2005.07.001

Google Scholar

[22] Sun Z M, Murugaiah A, Zhen T., Zhou Z, Barsoum M W. Microstructure and mechanical properties of porous TiSiC₂, Acta Materiaia,2005,53: 4359-4366.

DOI: 10.1016/j.actamat.2005.05.034

Google Scholar

[23] M.H. Golabgir, R. Ebrahimi-Kahrizsangi, O. Torabi, H. Tajizadegan, A. Jamshidi,Fabrication and evaluation of oxidation resistance performance of open-celled Fe (Al) foam by space-holder technique, Adv. Powder Technol. 25 (2014) 960–967.

DOI: 10.1016/j.apt.2014.01.020

Google Scholar

[24] M. Alizadeh, M. Mirzaei-Aliabadi, Compressive properties and energy absorptionbehavior of Al–Al2O3 composite foam synthesized by space-holder technique, Mater.Des. 35 (2012) 419–424.

DOI: 10.1016/j.matdes.2011.09.059

Google Scholar

[25] I. Mutlu, E. Oktay, Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments., Mater. Sci.Eng. C. Mater. Biol. Appl. 33 (2013) 1125–31.

DOI: 10.1016/j.msec.2012.12.004

Google Scholar

[26] H. Bakan, A novel water leaching and sintering process for manufacturing highly porous stainless steel, Scr. Mater. 55 (2006) 203–206.

DOI: 10.1016/j.scriptamat.2006.03.039

Google Scholar

[27] Y. Torres, J.J. Pavón, J. a. Rodríguez, Processing and characterization of porous titanium for implants by using NaCl as space holder, J. Mater. Process. Technol. 212(2012) 1061–1069.

DOI: 10.1016/j.jmatprotec.2011.12.015

Google Scholar

[28] A. Mansourighasri, N. Muhamad, a. B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mater. Process. Technol. 212 (2012) 83–89.

DOI: 10.1016/j.jmatprotec.2011.08.008

Google Scholar

[29] M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, A.K. Gupta, Titanium foam through powder metallurgy route using acicular urea particles as space holder, Mater. Lett. 65(2011) 3199–3201.

DOI: 10.1016/j.matlet.2011.07.004

Google Scholar

[30] N. Michailidis, F. Stergioudi, a. Tsouknidas, E, Pavlidou, Compressive response of Al foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A. 528 (2011) 1662–1667.

DOI: 10.1016/j.msea.2010.10.088

Google Scholar

[31] S. Ramachandra, P. Sudheer Kumar, U. Ramamurty, Impact energy absorption in an Al foam at low velocities, Scr. Mater. 49 (2003) 741–745.

DOI: 10.1016/s1359-6462(03)00431-7

Google Scholar

[32] I. Mutlu, E. Oktay, Mechanical properties of sinter-hardened Cr–Si–Ni–Mo based steel foam, Mater. Des. 44 (2013) 274–282.

DOI: 10.1016/j.matdes.2012.08.032

Google Scholar

[33] N. Bekoz, E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size, Mater. Sci. Eng. A. 576 (2013) 82–90.

DOI: 10.1016/j.msea.2013.04.009

Google Scholar

[34] D. Tian, Y. Pang, L. Yu, L. Sun, Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique, Int. J. Miner. Metall.Mater. 23 (2016) 793-798.

DOI: 10.1007/s12613-016-1293-1

Google Scholar

[35] Mariappan R, Kumaran S, SrinivasaRao T. Effect of sintering atmosphere on structure and properties of austeno-ferritic stainless steels. Mater SciEng, A 2009;517:328–33.

DOI: 10.1016/j.msea.2009.04.011

Google Scholar

[36] Garcia C, Martin F, Blanco Y. Effect of sintering cooling rate on corrosion resistance of powder metallurgy austenitic, ferritic and duplex stainless steels sintered in nitrogen. CorrosSci 2012;61:45–52.

DOI: 10.1016/j.corsci.2012.04.021

Google Scholar

[37] A.R. Vaccaro, The role of the osteo conductive scaffold in synthetic bone graft. Orthopedics, (2002).25(5 Suppl):s571-8.

Google Scholar

[38] A.Dudek, R.Wlodarczyk, Effect of sintering atmosphere on properties of porous stainless steel for biomedical applications. Material Science and Engineering, (2013). C33:434–439.

DOI: 10.1016/j.msec.2012.09.010

Google Scholar

[39] bBakkalog˘lu A. Sintering of stainless steels powders. In: 3rd International P/M conference. Turkey; Ankara; 2002; p.1154–67.

Google Scholar

[40] Bakan HI. A novel water leaching and sintering process for manufacturing highly porous stainless steel.Scr Mater 2006;55:203–6.

DOI: 10.1016/j.scriptamat.2006.03.039

Google Scholar

[41] Dewidar MM, Khalil KA, Lim JK. Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans Nonferrous MetSoc 2007; 17:468–73.

DOI: 10.1016/s1003-6326(07)60117-4

Google Scholar

[42] M.Dewidar, Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications.International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol: 12 No: 01.

Google Scholar

[43] B.K. Datta , An advanced technique of processing engineering materials, Powder metallurgy, PHI learning private limited 2012,pp.1-185.

Google Scholar

[44] H.I. Bakan, D. Heaney, R.M. German, Liquid phase sintering of injection moulded 316L powder. In: Third International P/M Conference, Gazi University, Ankara, Turkey, (2002). 1179–1190.

Google Scholar