[1]
M.Long H.J. Rack, Titanium alloys in total joint replacement, Biomaterial,(1998), 19: 1621–1639.
DOI: 10.1016/s0142-9612(97)00146-4
Google Scholar
[2]
J.D. Dabrowski,Z. Oksiuta, Porous implantation material from vitalium alloy powder. Mater Eng, (2000), 4: 174–178.
Google Scholar
[3]
R.M. Pilliar, P/M Processing of surgical implants: Sintered porous surfaces for tissue-to-implant fixation, Int. J P/M, (1998), 34: 33–45.
Google Scholar
[4]
N.Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koc, Review of magnesium-based biomaterials and their applications, Journal of Magnesium and Alloys (2018). P 23–43.
DOI: 10.1016/j.jma.2018.02.003
Google Scholar
[5]
L. A. Dobrzanski, Z. Brytan, M.A. Grande,M.Rosso,Properties of duplex stainless steels made by powder metallurgy,Archives of Materials Science and Engineering, (2007).
Google Scholar
[6]
O.Coovattanachai, N.Tosangthum, M. Morakotjinda, et al. Performance improvement of P/M 316L by addition of liquid phase forming powder. Mater SciEng A, (2007), 445-446: 440–445.
DOI: 10.1016/j.msea.2006.09.105
Google Scholar
[7]
J.Meng, N.H. Loh, B.Y. Tay et al.,Tribological behavior of 316L stainless steel fabricated by micro powder injection molding. Wear, (2010), 268: 1013–1019.
DOI: 10.1016/j.wear.2009.12.033
Google Scholar
[8]
U. Lindstedt, B. Karlsson,Low cycle fatigue behaviour of a porous PM 316L austenitic stainless steel. (1998).
DOI: 10.1016/b978-008043326-4/50014-3
Google Scholar
[9]
I. Özbek, B.A. Konduk, Bindal C, et al., Characterization of borided AISI 316L stainless steel implant. Vacuum, (2002), 65: 521–525.
DOI: 10.1016/s0042-207x(01)00466-3
Google Scholar
[10]
M. Navarro, A. Michiardi, O. Castano, J.A. Planell, Biomaterials in orthopaedics, J.R. Soc. Interface, (2008)5, 1137-1158.
DOI: 10.1098/rsif.2008.0151
Google Scholar
[11]
N. Jha, D.P. Mondal, J. DuttaMajumdar, A. Badkul, A.K. Jha, A.K. Khare, Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route, Mater. Design, 47 (2013) 810-819.
DOI: 10.1016/j.matdes.2013.01.005
Google Scholar
[12]
M.H. Golabgir, R. Ebrahimi-Kahrizsangi, O. Torabi, A. Saatchi, Fabrication of open cell Fe-10%Al foam by space-holder technique, Arch. Metall. Mater., 59 (2014) 41-45.[11] S. Joshi, G.K. Gupta, Synthesis characterization of stainless steel foam via powder metallurgy taking acicular urea as space holder, Mater. Sci. Res. India., 12 (2015) 43-49.
DOI: 10.2478/amm-2014-0007
Google Scholar
[13]
N. Tuncer, G. Arslan, Designing compressive properties of titanium foams,J. Mater Sci., (2009). 44, 1477–1484.
DOI: 10.1007/s10853-008-3167-z
Google Scholar
[14]
M.Long H.J. Rrack, Tittanium alloys in total joint replacement-A materials science perspective. Biomaterials (1998),1621-1639.
DOI: 10.1016/s0142-9612(97)00146-4
Google Scholar
[15]
A.Laptev. M. Bram, H .P., Buchkremer,D.Stover., Study of production route for titanium parts combining very high porosity and complex shape, Powder Metallurgy, (2004), 47(1), 85-92.
DOI: 10.1179/003258904225015536
Google Scholar
[16]
Thieme M., WietersK P, Bergner F, Scharnweber D, Worch H, Ndop J, Kim T J, Grill W. Titanium powder sintering for preparation of a porous functionally graded material designed for orthopedic implant[j],journal of material science, materials in medicine,2001, 225-231.
DOI: 10.4028/www.scientific.net/msf.308-311.374
Google Scholar
[17]
Simmons C A, Valiquette N, Pilliar R M. Osseointegration of sintered porous-surfaced and plasma spray-coated implants: An animal model study of early post implantation healing response and mechanical stability [J]. J Biomed Mater Res, 1999, 47(2), 127-138.
DOI: 10.1002/(sici)1097-4636(199911)47:2<127::aid-jbm3>3.0.co;2-c
Google Scholar
[18]
XIA Ren-long, LENG Yang, CHEN JI-yong, ZHANG Qi-yi, A comparative study of calcium phosphate formation on bio-ceramics in vitro and in vivo[J},Biomaterials,2005,5477-6486.
DOI: 10.1016/j.biomaterials.2005.04.028
Google Scholar
[19]
Y.B. An, N.H. Oh, Y.W. Chun, Y.H. Kim, D.K. Kim, J.S. Park, J-J. Kwon, K.O. Choi, T.G. Eom, T.H. Byun, J.Y. Kim, P.J. Reucroft, K.J. Kim, W.H. Lee, Mechanical properties of environmental-electro-discharge-sintered porous Ti implants, Materials Letters, (2005) 2178-2182.
DOI: 10.1016/j.matlet.2005.02.059
Google Scholar
[20]
Deng X, Piotrowski G B, Williams J J, Chawla N. Effect of porosity and tension-compression asymmetry on the Bauschinger effect in porous sintered steel[J],International journal of fatigue;2005, 1233-1243.
DOI: 10.1016/j.ijfatigue.2005.06.041
Google Scholar
[21]
Lee W H, Hyun C Y, XPS, study of porous dental implants fabricated by electro-discharge-sintering of spherical Ti-6Al-4V in a Vacuum atmosphere, Applied surface science,2005,353: 4250-4256.
DOI: 10.1016/j.apsusc.2005.07.001
Google Scholar
[22]
Sun Z M, Murugaiah A, Zhen T., Zhou Z, Barsoum M W. Microstructure and mechanical properties of porous TiSiC₂, Acta Materiaia,2005,53: 4359-4366.
DOI: 10.1016/j.actamat.2005.05.034
Google Scholar
[23]
M.H. Golabgir, R. Ebrahimi-Kahrizsangi, O. Torabi, H. Tajizadegan, A. Jamshidi,Fabrication and evaluation of oxidation resistance performance of open-celled Fe (Al) foam by space-holder technique, Adv. Powder Technol. 25 (2014) 960–967.
DOI: 10.1016/j.apt.2014.01.020
Google Scholar
[24]
M. Alizadeh, M. Mirzaei-Aliabadi, Compressive properties and energy absorptionbehavior of Al–Al2O3 composite foam synthesized by space-holder technique, Mater.Des. 35 (2012) 419–424.
DOI: 10.1016/j.matdes.2011.09.059
Google Scholar
[25]
I. Mutlu, E. Oktay, Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments., Mater. Sci.Eng. C. Mater. Biol. Appl. 33 (2013) 1125–31.
DOI: 10.1016/j.msec.2012.12.004
Google Scholar
[26]
H. Bakan, A novel water leaching and sintering process for manufacturing highly porous stainless steel, Scr. Mater. 55 (2006) 203–206.
DOI: 10.1016/j.scriptamat.2006.03.039
Google Scholar
[27]
Y. Torres, J.J. Pavón, J. a. Rodríguez, Processing and characterization of porous titanium for implants by using NaCl as space holder, J. Mater. Process. Technol. 212(2012) 1061–1069.
DOI: 10.1016/j.jmatprotec.2011.12.015
Google Scholar
[28]
A. Mansourighasri, N. Muhamad, a. B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mater. Process. Technol. 212 (2012) 83–89.
DOI: 10.1016/j.jmatprotec.2011.08.008
Google Scholar
[29]
M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, A.K. Gupta, Titanium foam through powder metallurgy route using acicular urea particles as space holder, Mater. Lett. 65(2011) 3199–3201.
DOI: 10.1016/j.matlet.2011.07.004
Google Scholar
[30]
N. Michailidis, F. Stergioudi, a. Tsouknidas, E, Pavlidou, Compressive response of Al foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A. 528 (2011) 1662–1667.
DOI: 10.1016/j.msea.2010.10.088
Google Scholar
[31]
S. Ramachandra, P. Sudheer Kumar, U. Ramamurty, Impact energy absorption in an Al foam at low velocities, Scr. Mater. 49 (2003) 741–745.
DOI: 10.1016/s1359-6462(03)00431-7
Google Scholar
[32]
I. Mutlu, E. Oktay, Mechanical properties of sinter-hardened Cr–Si–Ni–Mo based steel foam, Mater. Des. 44 (2013) 274–282.
DOI: 10.1016/j.matdes.2012.08.032
Google Scholar
[33]
N. Bekoz, E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size, Mater. Sci. Eng. A. 576 (2013) 82–90.
DOI: 10.1016/j.msea.2013.04.009
Google Scholar
[34]
D. Tian, Y. Pang, L. Yu, L. Sun, Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique, Int. J. Miner. Metall.Mater. 23 (2016) 793-798.
DOI: 10.1007/s12613-016-1293-1
Google Scholar
[35]
Mariappan R, Kumaran S, SrinivasaRao T. Effect of sintering atmosphere on structure and properties of austeno-ferritic stainless steels. Mater SciEng, A 2009;517:328–33.
DOI: 10.1016/j.msea.2009.04.011
Google Scholar
[36]
Garcia C, Martin F, Blanco Y. Effect of sintering cooling rate on corrosion resistance of powder metallurgy austenitic, ferritic and duplex stainless steels sintered in nitrogen. CorrosSci 2012;61:45–52.
DOI: 10.1016/j.corsci.2012.04.021
Google Scholar
[37]
A.R. Vaccaro, The role of the osteo conductive scaffold in synthetic bone graft. Orthopedics, (2002).25(5 Suppl):s571-8.
Google Scholar
[38]
A.Dudek, R.Wlodarczyk, Effect of sintering atmosphere on properties of porous stainless steel for biomedical applications. Material Science and Engineering, (2013). C33:434–439.
DOI: 10.1016/j.msec.2012.09.010
Google Scholar
[39]
bBakkalog˘lu A. Sintering of stainless steels powders. In: 3rd International P/M conference. Turkey; Ankara; 2002; p.1154–67.
Google Scholar
[40]
Bakan HI. A novel water leaching and sintering process for manufacturing highly porous stainless steel.Scr Mater 2006;55:203–6.
DOI: 10.1016/j.scriptamat.2006.03.039
Google Scholar
[41]
Dewidar MM, Khalil KA, Lim JK. Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans Nonferrous MetSoc 2007; 17:468–73.
DOI: 10.1016/s1003-6326(07)60117-4
Google Scholar
[42]
M.Dewidar, Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications.International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol: 12 No: 01.
Google Scholar
[43]
B.K. Datta , An advanced technique of processing engineering materials, Powder metallurgy, PHI learning private limited 2012,pp.1-185.
Google Scholar
[44]
H.I. Bakan, D. Heaney, R.M. German, Liquid phase sintering of injection moulded 316L powder. In: Third International P/M Conference, Gazi University, Ankara, Turkey, (2002). 1179–1190.
Google Scholar