[1]
R. L. Kegg, One-Line Machine and Process Diagnostics,, CIRP Ann., vol. 33, no. 2, p.469–473, (1984).
DOI: 10.1016/s0007-8506(16)30168-8
Google Scholar
[2]
V. Dubey, A. K. Sharma, and R. K. Singh, A Technological Review on Temperature Measurement Techniques in Various Machining Processes,, in Lecture Notes in Mechanical Engineering, 2021, p.55–67.
DOI: 10.1007/978-981-15-5151-2_6
Google Scholar
[3]
R. Mackinnon, G. E. Wilson, and A. J. Wilkinson, Tool Condition Monitoring Using Multi-Component Force Measurements,, Proc. Twenty-Sixth Int. Mach. Tool Des. Res. Conf., p.317–324, (1986).
DOI: 10.1007/978-1-349-08114-1_41
Google Scholar
[4]
V. Dubey, A. K. Sharma, P. Vats, D. Y. Pimenov, K. Giasin, and D. Chuchala, Study of a multicriterion decision-making approach to the mql turning of aisi 304 steel using hybrid nanocutting fluid,, Materials (Basel)., vol. 14, no. 23, (2021).
DOI: 10.3390/ma14237207
Google Scholar
[5]
H. Akhiani and J. A. Szpunar, Effect of surface roughness on the texture and oxidation behavior of Zircaloy-4 cladding tube,, Appl. Surf. Sci., vol. 285, no. PARTB, p.832–839, (2013).
DOI: 10.1016/j.apsusc.2013.08.137
Google Scholar
[6]
T. S. Ogedengbe et al., The Effects of Heat Generation on Cutting Tool and Machined Workpiece,, J. Phys. Conf. Ser., vol. 1378, no. 2, (2019).
Google Scholar
[7]
P. Krishnakumar, K. Rameshkumar, and K. I. Ramachandran, Tool wear condition prediction using vibration signals in high speed machining (HSM) of Titanium (Ti-6Al-4V) alloy,, Procedia Comput. Sci., vol. 50, p.270–275, (2015).
DOI: 10.1016/j.procs.2015.04.049
Google Scholar
[8]
Y. Zhou, B. Sun, and W. Sun, A tool condition monitoring method based on two-layer angle kernel extreme learning machine and binary differential evolution for milling,, Meas. J. Int. Meas. Confed., vol. 166, p.108186, (2020).
DOI: 10.1016/j.measurement.2020.108186
Google Scholar
[9]
H. Chang, P. Borghesani, W. A. Smith, and Z. Peng, Application of surface replication combined with image analysis to investigate wear evolution on gear teeth – A case study,, Wear, vol. 430–431, no. May, p.355–368, (2019).
DOI: 10.1016/j.wear.2019.05.024
Google Scholar
[10]
M. Klaic, Z. Murat, T. Staroveski, and D. Brezak, Tool wear monitoring in rock drilling applications using vibration signals,, Wear, vol. 408–409, no. January, p.222–227, (2018).
DOI: 10.1016/j.wear.2018.05.012
Google Scholar
[11]
J. Kurek et al., Developing automatic recognition system of drill wear in standard laminated chipboard drilling process,, Bull. Polish Acad. Sci. Tech. Sci., vol. 64, no. 3, p.633–640, (2016).
DOI: 10.1515/bpasts-2016-0071
Google Scholar
[12]
G. F. Wang, Y. W. Yang, Y. C. Zhang, and Q. L. Xie, Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection,, Sensors Actuators, A Phys., vol. 209, p.24–32, (2014).
DOI: 10.1016/j.sna.2014.01.004
Google Scholar
[13]
V. Pandiyan, W. Caesarendra, T. Tjahjowidodo, and H. H. Tan, In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm,, J. Manuf. Process., vol. 31, p.199–213, (2018).
DOI: 10.1016/j.jmapro.2017.11.014
Google Scholar
[14]
U. Aich and S. Banerjee, Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization,, Appl. Math. Model., vol. 38, no. 11–12, p.2800–2818, (2014).
DOI: 10.1016/j.apm.2013.10.073
Google Scholar
[15]
X. Tao and W. Tao, Cutting tool wear identification based on wavelet package and SVM,, Proc. World Congr. Intell. Control Autom., p.5953–5957, (2010).
DOI: 10.1109/wcica.2010.5554471
Google Scholar
[16]
P. Nie, H. Xu, Y. Liu, X. Liu, and Z. Li, Aviation tool wear states identifying based on EMD and SVM,, Proc. 2011 2nd Int. Conf. Digit. Manuf. Autom. ICDMA 2011, vol. 6, p.246–249, (2011).
DOI: 10.1109/icdma.2011.67
Google Scholar
[17]
X. L. Zhang, W. Chen, B. J. Wang, and X. F. Chen, Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization,, Neurocomputing, vol. 167, p.260–279, (2015).
DOI: 10.1016/j.neucom.2015.04.069
Google Scholar
[18]
B. Sick, On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research,, Mech. Syst. Signal Process., vol. 16, no. 4, p.487–546, (2002).
DOI: 10.1006/mssp.2001.1460
Google Scholar
[19]
T. Hastie, R. Tibshirani, and J. Friedman, Springer Series in Statistics The Elements of Statistical Learning Data Mining, Inference, and Prediction.,.
Google Scholar
[20]
J. Heaton, Introduction to neural networks with Java. Heaton Research, (2005).
Google Scholar
[21]
M. S. Alajmi and A. M. Almeshal, Predicting the tool wear of a drilling process using novel machine learning XGBoost-SDA,, Materials (Basel)., vol. 13, no. 21, p.1–16, (2020).
DOI: 10.3390/ma13214952
Google Scholar
[22]
R. Santhanam, N. Uzir, S. Raman, S. Banerjee, and R. S. Nishant Uzir Sunil R, Experimenting XGBoost Algorithm for Prediction and Classification of Different Datasets Comparative Study of XGBoost4j and Gradient Boosting for Linear Regression View project Experimenting XGBoost Algorithm for Prediction and Classifi cation of Different Datasets,, Int. J. Control Theory Appl., vol. 9, (2016).
Google Scholar
[23]
Y. Li, X. Meng, Z. Zhang, and G. Song, A Remaining useful life prediction method considering the dimension optimization and the iterative speed,, IEEE Access, vol. 7, p.180383–180394, (2019).
DOI: 10.1109/access.2019.2959405
Google Scholar
[24]
R. S. Peres, J. Barata, P. Leitao, and G. Garcia, Multistage Quality Control Using Machine Learning in the Automotive Industry,, IEEE Access, vol. 7, p.79908–79916, (2019).
DOI: 10.1109/access.2019.2923405
Google Scholar
[25]
L. Munkhdalai, T. Munkhdalai, O. E. Namsrai, J. Y. Lee, and K. H. Ryu, An empirical comparison of machine-learning methods on bank client credit assessments,, Sustain., vol. 11, no. 3, p.1–23, (2019).
DOI: 10.3390/su11030699
Google Scholar
[26]
J. R. Quinlan, Induction of Decision Trees,, (1986).
Google Scholar
[27]
V. Sugumaran, V. Muralidharan, and K. I. Ramachandran, Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing,, Mech. Syst. Signal Process., vol. 21, no. 2, p.930–942, (2007).
DOI: 10.1016/j.ymssp.2006.05.004
Google Scholar
[28]
L. Rokach and O. Maimon, DATA MINING WITH DECISION TREES.,.
Google Scholar
[29]
H. C. Phan, T. T. Le, N. D. Bui, H. T. Duong, and T. D. Pham, An empirical model for bending capacity of defected pipe combined with axial load,, Int. J. Press. Vessel. Pip., vol. 191, no. March, p.104368, (2021).
DOI: 10.1016/j.ijpvp.2021.104368
Google Scholar
[30]
V. Dubey, A. K. Sharma, and B. Singh, Optimization of machining parameters in chromium-additive mixed electrical discharge machining of the AA7075/5%B4C composite,, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., (2021).
DOI: 10.1177/09544089211031755
Google Scholar
[31]
V. Dubey and B. Singh, Study of Material Removal Rate in Powder Mixed EDM of AA7075/B 4 C Composite,, in Materials Today: Proceedings, 2018, vol. 5, no. 2, p.7466–7475.
DOI: 10.1016/j.matpr.2017.11.418
Google Scholar
[32]
T. Chai and R. R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,, Geosci. Model Dev., vol. 7, no. 3, p.1247–1250, Jun. (2014).
DOI: 10.5194/gmd-7-1247-2014
Google Scholar
[33]
F. BAYRAKTAR and F. KARA, Investigation of the Effect on Surface Roughness of Cryogenic Process Applied to Cutting Tool,, Int. J. Anal. Exp. Finite Elem. Anal., vol. 7, no. 2, p.19–27, (2020).
Google Scholar
[34]
M. Bolat, Machining of polycarbonate for optical applications a thesis submitted to the graduate school of natural and applied sciences of middle east technical university,, (2013).
Google Scholar
[35]
G. Krolczyk and M. Gajek, Predicting the surface roughness in the dry machining of duplex stainless steel (dss),, (2013).
Google Scholar