[1]
Viktor, P. Asthakov. (2005),On the inadequacy of the single-shear plane model of chip formation,, International Journal of Mechanical Sciences, Vol. 7 (2005), p.1649–1672.
DOI: 10.1016/j.ijmecsci.2005.07.002
Google Scholar
[2]
Viktor, P Astakhov and Xinran, Xiao. (2008), Methodology for practical cutting force evaluation based on the energy spent in the cutting system,, Machining Science and Technology, Vol. 12, p.325–347.
DOI: 10.1080/10910340802306017
Google Scholar
[3]
G. Petropoulos, I Ntziantzias and C. Anghel, A Predictive Model of Cutting Force In Turning Using Taguchi And Response Surface Techniques, 1st International Conference on Experiments/Process/System Modelling/Simulation/Optimization 1st IC-EpsMsO Athens, 6-9 July, (2005).
Google Scholar
[4]
Fnides, B., Yallese, M A., MabroukI, T and Rigal, J.F. (2011), Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel,, Indian Academy of Sciences, Sadhana Vol. 36, Part 1, February 2011, p.109–123.
DOI: 10.1007/s12046-011-0007-7
Google Scholar
[5]
Abhang, L.B and Hameedullah, M. (2011), Modeling and Analysis for Surface roughness in Machining EN-31 Steel using Response Surface Methodology,, International Journal of Applied Research in Mechanical Engineering, Volume-1, Issue-1, 2011, pp.33-38.
DOI: 10.47893/ijarme.2011.1007
Google Scholar
[6]
C. Nath, T. Kurfess, Obstruction-type Chip Breakers for Controllable Chips and Improved Cooling/Lubrication During Drilling – A Feasibility Study, Procedia Manuf. 5 (2016) 375–385, https://doi.org/10.1016/j.promfg.2016.08.032.
DOI: 10.1016/j.promfg.2016.08.032
Google Scholar
[7]
S. Li, K. Zhu, In-situ tool wear area evaluation in micro milling with considering the influence of cutting force, Mech. Syst. Signal Process. 161 (2021), 107971, https://doi.org/10.1016/j.ymssp.2021.107971.
DOI: 10.1016/j.ymssp.2021.107971
Google Scholar
[8]
X. Wu, J. Li, Y. Jin, S. Zheng, Temperature calculation of the tool and chip in slicing process with equal-rake angle arc-tooth slice tool, Mech. Syst. Signal Process. 143 (2020), 106793, https://doi.org/10.1016/j.ymssp.2020.106793.
DOI: 10.1016/j.ymssp.2020.106793
Google Scholar
[9]
T. Zhou, L. He, Z. Zou, F. Du, J. Wu, P. Tian, Three-dimensional turning force prediction based on hybrid finite element and predictive machining theory considering edge radius and nose radius, J. Manuf. Process. 58 (2020) 1304–1317, https://doi.org/10.1016/j.jmapro.2020.09.034.
DOI: 10.1016/j.jmapro.2020.09.034
Google Scholar
[10]
C.S. Kumar, P. Zeman, T. Polcar, A 2D finite element approach for predicting the machining performance of nanolayered TiAlCrN coating on WC-Co cutting tool during dry turning of AISI 1045 steel, Ceram. Int. 46 (2020) 25073–25088, https://doi.org/10.1016/j.ceramint. 2020.06.294.
DOI: 10.1016/j.ceramint.2020.06.294
Google Scholar
[11]
A.K. Parida, K. Maity, Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis, Eng. Sci. Technol. an Int. J. 20 (2) (2017) 687–693, https://doi.org/10.1016/j.jestch.2016.10.006.
DOI: 10.1016/j.jestch.2016.10.006
Google Scholar
[12]
S. Schindler, M. Zimmermann, J.C. Aurich, P. Steinmann, Thermo-elastic deformations of the workpiece when dry turning aluminum alloys - A finite element model to predict thermal effects in the workpiece, CIRP J. Manuf. Sci. Technol. 7 (2014) 233–245, https://doi.org/10.1016/j.cirpj.2014.04.006.
DOI: 10.1016/j.cirpj.2014.04.006
Google Scholar
[13]
M. Sadeghifar, M. Javidikia, V. Songmene, M. Jahazi, Finite element simulation-based predictive regression modeling and optimum solution for grain size in machining of Ti6Al4V alloy: Influence of tool geometry and cutting conditions, Simul. Model. Pract. Theory. 104 (2020), 102141.
DOI: 10.1016/j.simpat.2020.102141
Google Scholar
[14]
S. Razanica, A. Malakizadi, R. Larsson, S. Cedergren, B.L. Josefson, FE modeling and simulation of machining Alloy 718 based on ductile continuum damage, Int. J. Mech. Sci. 171 (2020) 105375, https://doi.org/10.1016/j.ijmecsci.2019.105375.
DOI: 10.1016/j.ijmecsci.2019.105375
Google Scholar
[15]
S.K. Mishra, S. Ghosh, S. Aravindan, Performance of laser processed carbide tools for machining of Ti6Al4V alloys: A combined study on experimental and finite element analysis, Precis. Eng. 56 (2019) 370–385, https://doi.org/10.1016/j.precisioneng.2019.01.006.
DOI: 10.1016/j.precisioneng.2019.01.006
Google Scholar
[16]
A.K. Parida, K. Maity, Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis, Eng. Sci. Technol. an Int. J. 20 (2) (2017) 687–693, https://doi.org/10.1016/j.jestch.2016.10.006.
DOI: 10.1016/j.jestch.2016.10.006
Google Scholar
[17]
M. Du, Z. Cheng, S. Wang, Finite element modeling of friction at the tool-chip-workpiece interface in high speed machining of Ti6Al4V, Int. J. Mech. Sci. 163 (2019), 105100, https://doi.org/10.1016/j.ijmecsci.2019.105100.
DOI: 10.1016/j.ijmecsci.2019.105100
Google Scholar
[18]
F.A.V. da Silva, J.C. Outeiro, Machining simulation of Inconel 718 using Lagrangian and Coupled Eulerian-Lagrangian approaches, Procedia CIRP. 102 (2021) 453–458, https://doi.org/10.1016/j.procir.2021.09.077.
DOI: 10.1016/j.procir.2021.09.077
Google Scholar
[19]
V. Veeranaath, Experimental Investigation of Process Parameters in Orthogonal Machining of Ti6Al4V with TiC Coated PCBN Inserts – A Finite Element Analysis, Mater. Today Proc. 5 (2018) 19547–19554, https://doi.org/10.1016/j.matpr.2018.06.316.
DOI: 10.1016/j.matpr.2018.06.316
Google Scholar
[20]
P. Niesłony, W. Grzesik, K. Jarosz, P. Laskowski, FEM-based optimization of machining operations of aerospace parts made of Inconel 718 superalloy, Procedia CIRP. 77 (2018) 570–573, https://doi.org/10.1016/j.procir.2018.08.220.
DOI: 10.1016/j.procir.2018.08.220
Google Scholar
[21]
Korkmaz, Mehmet Erdi, Nafiz Yaşar, and Mustafa Günay. Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy., Engineering Science and Technology, an International Journal 23, no. 3 (2020): 664-673. https://doi.org/10.1016/j.jestch.2020.02.001.
DOI: 10.1016/j.jestch.2020.02.001
Google Scholar
[22]
Gupta, Munish Kumar, Mehmet Erdi Korkmaz, Murat Sarıkaya, Grzegorz M. Krolczyk, Mustafa Günay, and Szymon Wojciechowski. Cutting forces and temperature measurements in cryogenic assisted turning of AA2024-T351 alloy: An experimentally validated simulation approach., Measurement 188 (2022): 110594.
DOI: 10.1016/j.measurement.2021.110594
Google Scholar
[23]
Gupta, Munish Kumar, Mehmet Erdi Korkmaz, Murat Sarıkaya, Grzegorz M. Krolczyk, and Mustafa Günay. In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study., Mechanical Systems and Signal Processing 169 (2022): 108772.
DOI: 10.1016/j.ymssp.2021.108772
Google Scholar
[24]
F. Jafarian, M. Imaz Ciaran, D. Umbrello, P.J. Arrazola, L. Filice, H. Amirabadi, Finite element simulation of machining Inconel 718 alloy including microstructure changes, Int. J. Mech. Sci. 88 (2014) 110–121, https://doi.org/10.1016/j. ijmecsci.2014.08.007.
DOI: 10.1016/j.ijmecsci.2014.08.007
Google Scholar
[25]
S.K. Mishra, S. Ghosh, S. Aravindan, 3D finite element investigations on textured tools with different geometrical shapes for dry machining of titanium alloys, Int. J. Mech. Sci. 141 (2018) 424–449, https://doi.org/10.1016/j.ijmecsci.2018.04.011.
DOI: 10.1016/j.ijmecsci.2018.04.011
Google Scholar
[26]
M.E. Korkmaz, P. Verleysen, M. Günay, Identification of constitutive model parameters for nimonic 80A superalloy, Trans. Indian Inst. Met. 71 (12) (2018) 2945–2952, https://doi.org/10.1007/s12666-018-1394-9.
DOI: 10.1007/s12666-018-1394-9
Google Scholar
[27]
M.E. Korkmaz, M. Günay, P. Verleysen, Investigation of tensile Johnson-Cook model parameters for Nimonic 80A superalloy, J. Alloys Compd. 801 (2019), 542–549, https://doi.org/10.1016/J.JALLCOM.2019.06.153.
DOI: 10.1016/j.jallcom.2019.06.153
Google Scholar
[28]
A Dorogoy, D. Rittel, Determination of the johnson-cook material parameters using the SCS specimen, Exp. Mech. 49 (2009) 881–885, https://doi.org/ 10.1007/s11340-008-9201-x.
DOI: 10.1007/s11340-008-9201-x
Google Scholar
[29]
Sagar, Chithajalu Kiran, Tarun Kumar, Amrita Priyadarshini, and Amit Kumar Gupta. Prediction and optimization of machining forces using oxley's predictive theory and RSM approach during machining of WHAs., Defence Technology 15, no. 6 (2019): 923-935.
DOI: 10.1016/j.dt.2019.07.004
Google Scholar
[30]
Śniegulska-Grądzka, D., Nejman, M. and Jemielniak, K., 2019. Experimental verification of dependence of the cutting forces prediction accuracy on the uncut chip cross section modeling in turning. Procedia CIRP, 79, pp.51-56 https://doi.org/10.1016/j.procir.2019.02.010.
DOI: 10.1016/j.procir.2019.02.010
Google Scholar