Adaptation of the Methylene Blue Adsorption Method for Specific Surface Area Determination of Betulin Particles

Article Preview

Abstract:

Application of the adapted methylene blue (MB) adsorption method in determining specific surface area was investigated on particles containing hydrogels obtained from purified (99 wt%) and unpurified (60 wt%) betulin samples. In order to study the adsorption isotherms of MB on betulin particles in aqueous dispersions, initial concentration of MB was varied. An analysis of the adsorption process with the Langmuir adsorption model was performed. The results indicate that the experimental data fits very well with the Langmuir adsorption model. Straight isotherms are obtained with very good determination coefficients (R2=0.99; R2=1.00), which means that the surface of purified and unpurified betulin particles is homogeneous energetically and a monomolecular coverage forms during adsorption. The MB adsorption method adapted for betulin particles is simple and requires less complex apparatus and time than other methods. The determined specific surface area can be used to characterize the surface properties of betulin particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-161

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Patočka, Biologically Active Pentacyclic Triterpenes and Their Current Medicine Signification, J. Appl. Biomed. 10 (3) (2012) 7–12.

DOI: 10.32725/jab.2003.002

Google Scholar

[2] D. N. Vedernikov, N. Y. Shabanova, V. I. Roshchin, Change in the Chemical Composition of the Crust and Inner Bark of the Betula Pendula Roth. Birch with tree height, Russ. J. Bioorganic Chem. 37 (7) (2011) 877–882.

DOI: 10.1134/s1068162011070259

Google Scholar

[3] J. Rizhikovs, J. Zandersons, G. Dobele, A. Paze, Isolation of Triterpene-Rich Extracts From Outer Birch Bark by Hot Water and Alkaline Pre-Treatment or the Appropriate Choice of Solvents, Ind. Crops Prod. 76 (2015) 209–214.

DOI: 10.1016/j.indcrop.2015.06.053

Google Scholar

[4] S. Amiri, S. Ahmadi, M. Mehrbod, P. Khadem, F. Behrouj, H. Aghanoori, M. R. Machaj, F. Ghamsari, M. Rosik, J. Hudecki, A. Afkhami, A. Hashemi, M. Los, M. J. Mokarram, P. Madrakian, T. G.Saeid., Betulin and Its Derivatives as Novel Compounds With Different Pharmacological Effects, Biotechnol. Adv. 38 (2020) 1–39.

DOI: 10.1016/j.biotechadv.2019.06.008

Google Scholar

[5] S. Alakurtti, T. Mäkelä, S. Koskimies, J. Yli-Kauhaluoma, Pharmacological Properties of the Ubiquitous Natural Product Betulin, Eur. J. Pharm. Sci. 29 (2006) 1–13, (2006).

DOI: 10.1016/j.ejps.2006.04.006

Google Scholar

[6] A. Z. Abyshev, É. M. Agaev, A. B. Guseinov, Studies of the Chemical Composition of Birch Bark Extracts (Cortex betula) From the Betulaceae family, Pharm. Chem. J. 41 (8) (2007) 419–423.

DOI: 10.1007/s11094-007-0091-5

Google Scholar

[7] D. Blondeau, A. St-Pierre, N. Bourdeau, J. Bley, A. Lajeunesse, I. Desgagné-Penix, Antimicrobial Activity and Chemical Composition of White Birch (Betula papyrifera Marshall) Bark Extracts, Microbiologyopen. 9 (1) (2020) 1–23.

DOI: 10.1002/mbo3.944

Google Scholar

[8] R. Berzins A. Paze, J. Rizhikovs, R. Makars, D. Godina, M. Lauberts, K. Stankus, Influence of Solvents on the Antioxidant Properties of the Birch Outer Bark Extract in Cosmetic Emulsions. Key Eng. Mater., 903 (1) (2021) 28–33.

DOI: 10.4028/www.scientific.net/kem.903.28

Google Scholar

[9] R. Makars A. Paze, J. Rizikovs, R. Berzins, D. Godina, M. Puke, K. Stankus, I. Virsis, Changes in Composition of Birch Outer Bark Extractives After Recrystallization with C2-C5 Alkanols, Key Eng. Mater. 850 (1) (2020) 3–8.

DOI: 10.4028/www.scientific.net/kem.850.3

Google Scholar

[10] N. A. J. C. Furtado, E. Laetitia, H. Miranda, L. M. Loira-Pastoriza, C. Preat, V. Larondelle, Y. André, Pentacyclic Triterpene Bioavailability: An Overview of in vitro and in vivo Studies, Molecules, 22 (3) (2017) 1–24.

DOI: 10.3390/molecules22030400

Google Scholar

[11] R. Al-Kassas, M. Bansal, J. Shaw, Nanosizing Techniques for Improving Bioavailability of Drugs, J. Control. Release. 260 (17) (2017) 202–212.

DOI: 10.1016/j.jconrel.2017.06.003

Google Scholar

[12] X. Zhao, W. Wang, Y. Zu, Y. Zhang, Y. Li, W. Sun, C. Shan, Y. Ge, Preparation and Characterization of Betulin Nanoparticles for Oral Hypoglycemic Drug by Antisolvent Precipitation, Drug Deliv. 21 (6) (2014) 467–479.

DOI: 10.3109/10717544.2014.881438

Google Scholar

[13] R. Bardestani, G. S. Patience, S. Kaliaguine, Experimental Methods in Chemical Engineering: Specific Surface Area and Pore Size Distribution Measurements BET, BJH, and DFT, Can. J. Chem. Eng. 97 (11) (2019) 2781–2791.

DOI: 10.1002/cjce.23632

Google Scholar

[14] J. J. Kipling R. B. Wilson, Adsorption of Methylene Blue in the Determination of Surface Areas, J. Appl. Chem. 10 (3) (2007) 109–113.

DOI: 10.1002/jctb.5010100303

Google Scholar

[15] T. Skripkina, E. Podgorbunskikh, A. Bychkov, O. Lomovsky, Sorption of Methylene Blue for Studying the Specific Surface Properties of Biomass Carbohydrates, Coatings, 10 (11) (2020) 1–10.

DOI: 10.3390/coatings10111115

Google Scholar

[16] G. I. Malicev, A. A. Zaharova, Study of Betulin Stability by Electrokinetic Potential determination, UGLTU. 3 (78) (2021) 63–67. (in Russian).

Google Scholar

[17] A. Itodo, H. Itodo, M. Gafar, Estimation of Specific Surface Area using Langmuir Isotherm Method, J. Appl. Sci. Environ. Manag. 14 (4) (2011) 1-5.

DOI: 10.4314/jasem.v14i4.63287

Google Scholar

[18] G. G. Nakhwa, Specific Surface Areas of Finely Divided Solids By, J. Appl. Chem. 99 (32) (1962) 266–273.

Google Scholar