[1]
Li, Q., et al., Pyrolytic spray increases levoglucosan production during fast pyrolysis. J Anal Appl Pyrolysis, 100 (2013) 33-40.
DOI: 10.1016/j.jaap.2012.11.013
Google Scholar
[2]
Seo, M.W., et al., Recent advances of thermochemical conversion processes for biorefinery. Bioresource Technol, 343 (2022) 126109.
DOI: 10.1016/j.biortech.2021.126109
Google Scholar
[3]
Zhurinsh, A., et al., Effect of pre-treatment conditions on the analytical pyrolysis products from birch wood lignocellulose. J Anal Appl Pyrolysis, 103 (2013) 227-231.
DOI: 10.1016/j.jaap.2012.12.008
Google Scholar
[4]
Werpy, T. and G. Petersen, eds. Top Value Added Chemicals from Biomass. Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. (2004), US Department of Energy: US.
DOI: 10.2172/15008859
Google Scholar
[5]
Stanford, J.P., et al., Separation of sugars and phenolics from the heavy fraction of bio-oil using polymeric resin adsorbents. Sep Purif Technol, 194 (2018) 170-180.
DOI: 10.1016/j.seppur.2017.11.040
Google Scholar
[6]
Kaur, J., et al., Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci Tech, (2022).
Google Scholar
[7]
Mirza, A.C. and S.S. Panchal, Safety evaluation of syringic acid: subacute oral toxicity studies in Wistar rats. Heliyon, 5(8) (2019) e02129.
DOI: 10.1016/j.heliyon.2019.e02129
Google Scholar
[8]
García, M., et al., Antioxidants for biodiesel: Additives prepared from extracted fractions of bio-oil. Fuel Process Technol, 156 (2017) 407-414.
DOI: 10.1016/j.fuproc.2016.10.001
Google Scholar
[9]
Hassan, E.B., E.M. El-Giar, and P. Steele, Evaluation of the antioxidant activities of different bio-oils and their phenolic distilled fractions for wood preservation. Int Biodeter Biodegr, 110 (2016) 121-128.
DOI: 10.1016/j.ibiod.2016.03.015
Google Scholar
[10]
Ponomarenko, J., et al., Analytical pyrolysis – A tool for revealing of lignin structure-antioxidant activity relationship. J Anal Appl Pyrolysis, 113 (2015) 360-369.
DOI: 10.1016/j.jaap.2015.02.027
Google Scholar
[11]
del Pozo, C., et al., Production, identification, and quantification of antioxidants from torrefaction and pyrolysis of grape pomace. Fuel Process Technol, 211 (2021) 106602.
DOI: 10.1016/j.fuproc.2020.106602
Google Scholar
[12]
del Pozo, C., et al., Production of antioxidants and other value-added compounds from coffee silverskin via pyrolysis under a biorefinery approach. Waste Manage, 109 (2020) 19-27.
DOI: 10.1016/j.wasman.2020.04.044
Google Scholar
[13]
Ma, C., et al., Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves. J Anal Appl Pyrolysis, 104 (2013) 38-47.
DOI: 10.1016/j.jaap.2013.09.011
Google Scholar
[14]
Lu, X., et al., Enhanced antioxidant activity of aqueous phase bio-oil by hydrothermal pretreatment and its structure-activity relationship. J Anal Appl Pyrolysis, 153 (2021) 104992.
DOI: 10.1016/j.jaap.2020.104992
Google Scholar
[15]
Abas, F.Z., F.N. Ani, and Z.A. Zakaria, Microwave-assisted production of optimized pyrolysis liquid oil from oil palm fiber. J Clean Prod, 182 (2018) 404-413.
DOI: 10.1016/j.jclepro.2018.02.052
Google Scholar
[16]
de Menezes, B.B., et al., A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC50 determination by UV–Vis spectroscopy. Anal Chim Acta, 1157 (2021) 338398.
DOI: 10.1016/j.aca.2021.338398
Google Scholar
[17]
Olszowy, M. and A.L. Dawidowicz, Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chemical Papers, 72(2) (2018) 393-400.
DOI: 10.1007/s11696-017-0288-3
Google Scholar
[18]
Ghasemi, K., et al., Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks. J Med Plants Res, 5 (2011) 1128-1133.
Google Scholar
[19]
Sadeghi, Z., et al., Antioxidant activity and total phenolic content of Boerhavia elegans (choisy) grown in Baluchestan, Iran. Avicenna Journal of Phytomedicine, 5 (2015) 1-9.
Google Scholar
[20]
Ali, A., et al., Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules (Basel, Switzerland), 23(2) (2018) 484.
DOI: 10.3390/molecules23020484
Google Scholar