[1]
Gadallah N, Sabry I, Ghafaar MA (2020) A Summarized Review on Friction Stir Welding for Aluminum Alloys. Acad Res Community Publ 4:1 https://doi.org/10.21625/archive.v4i1.695.
DOI: 10.21625/archive.v4i1.695
Google Scholar
[2]
Santhosh kumar S, Senthil Kumar KL, Kalil Rahiman M, Mathankumar P (2020) A review on friction stir welding of aluminium alloys and the effects on tool geometry. IOP Conf. Ser. Mater. Sci. Eng. 764. https://doi.org/10.1088/1757-899X/764/1/012009.
DOI: 10.1088/1757-899x/764/1/012009
Google Scholar
[3]
T. Bajpei, H. Chelladurai, M.Z. Ansari, Experimental investigation and numerical analyses of residual stresses and distortions in GMA welding of thin dissimilar AA5052-AA6061 plates, J. Manuf. Process. 25 (2017) 340–350. https://doi.org/10.1016/j.jmapro.2016.12.017.
DOI: 10.1016/j.jmapro.2016.12.017
Google Scholar
[4]
Balram Yelamasetti, Venkat Ramana G, Sandeep Manikyam, Kuldeep K. Saxena, Multi-response Taguchi grey relational analysis of mechanical properties and weld bead dimensions of dissimilar joint of AA6082 and AA7075, Adv. Mater. Process. Technol. (2021). https://doi.org/10.1080/2374068X.2021.1946340.
DOI: 10.1080/2374068x.2021.1946340
Google Scholar
[5]
Ganesh, M.R.S., Reghunath, N., J.Levin, M. et al. Strontium in Al–Si–Mg Alloy: A Review. Met. Mater. Int. 28, 1–40 (2022). https://doi.org/10.1007/s12540-021-01054-y.
DOI: 10.1007/s12540-021-01054-y
Google Scholar
[6]
Robert Kosturek, Janusz Mierzyński, Marcin Wachowski, Janusz Torzewski, Lucjan Śnieżek. The influence of tool traverse speed on the low cycle fatigue properties of AZ31 friction stir welded joints. Procedia Structural Integrity Elsevier B.V. 2021; 36:153-158; https://doi.org/10.1016/j.prostr.2022.01.017.
DOI: 10.1016/j.prostr.2022.01.017
Google Scholar
[7]
Tian DING, Hong-ge, YAN1, Ji-hua CHEN, Wei-jun XIA, Bin SU, Effect of welding speed on microstructure and mechanical properties of Al−Mg−Mn−Zr−Ti alloy sheet during friction stir welding. Transactions of Nonferrous Metals Society of China. 2021; 31:12; 3626-3642 https://doi.org/10.1016/S1003-6326(21)65753-9.
DOI: 10.1016/s1003-6326(21)65753-9
Google Scholar
[8]
R.P. Verma, K.N. Pandey, Y. Sharma, Effect of ER4043 and ER5356 filler wire on mechanical properties and microstructure of dissimilar aluminium alloys, 5083-O and 6061-T6 joint, welded by the metal inert gas welding, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229 (2015) 1021–1028. https://doi.org/10.1177/0954405414535771.
DOI: 10.1177/0954405414535771
Google Scholar
[9]
G. Venkat Ramana, B. Yelamasetti, T. Vishnu Vardhan, Effect of FSW process parameters and tool profile on mechanical properties of AA 5082 and AA 6061 welds, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.801.
DOI: 10.1016/j.matpr.2020.12.801
Google Scholar
[10]
G. G. Krishna, T. Mahender, S. Reddy, and R. S. U. Rao, The effect of offset tools on aluminum AA6351 alloy friction stir welds,, in Materials Today: Proceedings, 2021, vol. 46, p.320–324,.
DOI: 10.1016/j.matpr.2020.08.180
Google Scholar
[11]
Ugender, Influence of tool pin profile and rotational speed on the formation of friction stir welding zone in AZ31 magnesium alloy, Journal of Magnesium and alloys. 2018; 206-213. https://doi.org/10.1016/j.jma.2018.05.001.
DOI: 10.1016/j.jma.2018.05.001
Google Scholar
[12]
Kulwant Singh, Gurbhinder Singh, Harmeet Singh, Investigation of microstructure and mechanical properties of friction stir welded AZ61 magnesium alloy joint, Journal of Magnesium and Alloys 6 (2018) 292–298, https://doi.org/10.1016/j.jma.2018.05.004.
DOI: 10.1016/j.jma.2018.05.004
Google Scholar
[13]
Sara Bocchi, Marina Cabrini, Gianluc, D'Urso, the influence of process parameters on mechanical properties and corrosion behavior of friction stir welded aluminum joints, Journal of Manufacturing Processes, 35 (2018) 1–151526-6125 The Society of Manufacturing Engineers. Published by Elsevier Ltd. https://doi.org/10.1016/j.jmapro.2018.07.012.
DOI: 10.1016/j.jmapro.2018.07.012
Google Scholar
[14]
Balram Yelamasetti, Venkat ramana G, Vishnu vardhan T, Weldability and mechanical properties of AA5052 and AA7075 dissimilar joints developed by GTAW process, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.04.446.
DOI: 10.1016/j.matpr.2020.12.1115
Google Scholar
[15]
Balram Y, Sridhar Babu B, Vishnu Vardhan T, et al. Residual stress analysis of dissimilar tungsten inert gas weldments of AISI 304 and Monel 400 by numerical simulation and experimentation. In: Materials Today: proceedings. Elsevier Ltd, 2019. 478–483.
DOI: 10.1016/j.matpr.2019.07.639
Google Scholar
[16]
Balram Yelamasetti, Venkat Ramana G, Sandeep Manikyam & Vishnu Vardhan T (2021): Thermal field and residual stress analyses of similar and dissimilar weldments joined by constant and pulsed current TIG welding techniques, Advances in Materials and Processing Technologies, https://doi.org/10.1080/2374068X.2021.1959114.
DOI: 10.1080/2374068x.2021.1959114
Google Scholar
[17]
Vemanaboina H, Edison G, Akella S, et al. Thermal analysis simulation for laser butt welding of inconel625 Using FEA. Int. J. Eng. Technol. 2018;7(4.10):85.
DOI: 10.14419/ijet.v7i4.10.20711
Google Scholar
[18]
Vemanaboina H, Edison G, Akella S. Validation of residual stress distributions in multi-pass dissimilar joints for GTAW process. J. Eng. Sci. Technol. 2019; 14:2964–2978.
Google Scholar
[19]
Deng, D. and Murakawa, H. (2008), Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25Cr-1Mo steel pipes,, Computational Materials Science, 43(4), 681–695.
DOI: 10.1016/j.commatsci.2008.01.025
Google Scholar
[20]
Kumaresan, D., Asraff, A. K. and Muthukumar, R. (2011), Numerical Investigation on Heat Transfer and Residual Stress in a Butt Welded Plate,, Journal of Pressure Vessel Technology, 133(4), 041-206.
DOI: 10.1115/1.4002859
Google Scholar
[21]
Yelamsetti B, Rajyalakshmi G, Thermal stress analysis of similar and dissimilar welded joints, U.P.B. Sci. Bull., Ser. D. 80 (2018).
Google Scholar
[22]
Y. Balram, T. Vishu Vardhan, B. Sridhar Babu et al., Thermal stress analysis of AISI 316 stainless steels weldments in TIG and pulse TIG welding processes, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2019.06.695.
DOI: 10.1016/j.matpr.2019.06.695
Google Scholar
[23]
K.C. Ganesh, M. Vasudevan, K.R. Balasubramanian, N. Chandrasekhar, P. Vasantharaja, Thermo- mechanical analysis of TIG welding of AISI 316LN stainless steel, Mater. Manuf. Process. 29 (2014) 903– 909, https://doi.org/10.1080/10426914.2013.872266.
DOI: 10.1080/10426914.2013.872266
Google Scholar
[24]
M. Vasudevan, M. N. Chandrasekhar, M. V Maduraimuthu, A. K. Bhaduri, and B. Raj, Real-time monitoring of weld pool during GTAW using infra-red thermography and analysis of infra-red thermal images, Weld. World, vol. 55, no. 7–8, p.83–89, (2011).
DOI: 10.1007/bf03321311
Google Scholar
[25]
Balram Y, Rajyalakshmi G. Thermal fields and residual stresses analysis in TIG weldments of SS 316 and Monel 400 by numerical simulation and experimentation. Mater Res Express. 2019; 6:0865e2.
DOI: 10.1088/2053-1591/ab23cf
Google Scholar
[26]
Balram Yelamasetti, Deepak Kumar, Kuldeep K Saxena & Rajyalakshmi G (2021): Experimental investigation on temperature profiles and residual stresses in GTAW dissimilar weldments of AA5052 and AA7075, Advances in Materials and Processing Technologies. https://doi.org/10.1080/2374068X.2021.1927641.
DOI: 10.1080/2374068x.2021.1927641
Google Scholar
[27]
Ramakrishna M V a & Srinivas K (2021): Grey relational analysis of frictionstir welding parameters for the development of dissimilar joints between AA6082 and AA7075, Advances in Materials and Processing Technologies, https://doi.org/10.1080/2374068X.2021.1959112.
DOI: 10.1080/2374068x.2021.1959112
Google Scholar