Mechanical and Metallurgical Characteristics of Rotary Friction Welded Low Carbon Steel Plate/Rod Joints

Article Preview

Abstract:

This work aims to study the mechanical properties and microstructural characteristics of rotary friction welding of the unsymmetrical (plate/rod) joints of AISI 1018 low carbon steel plate and AISI 1020 low carbon steel rod. The mechanical properties (tensile properties and hardness) were studied. The fractured surface of the tensile specimen was examined by Scanning Electron Microscope (SEM). The tesnile properties (strength and elongation) are higher than the AISI 1018 plate but slightly lower than the AISI 1020 rod due to coarse ferrite grains in the HAZ region of the AISI 1018 plate. The hardness varied from the fully deformed zone (FDZ) to the base metal. The average value of the ultimate tensile strength of the friction welded joint is about 452 MPa. The average value of hardness at fully deformed zone is about 252 Hv, which 32% higher than the base metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-160

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Seshu Kumar, Sk. Abdul Khadeer, V. Rajinikanth, S. Pahari, B. Ravi Kumar, Evaluation of bond interface characteristics of rotary friction welded carbon steel to low alloy steel pipe joints, Mater. Sci. Eng. A. 824 (2021) 1-14.

DOI: 10.1016/j.msea.2021.141844

Google Scholar

[2] B. Prasanna Nagasai, S. Malarvizhi and V. Balasubramanian, Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique, CIRP. J. Manu. Sci. Tech. 36 (2022) 100–116.

DOI: 10.1016/j.cirpj.2021.11.005

Google Scholar

[3] G. Subhash Chander, G. Madhusudhan Reddy, A. Venugopal Rao. Influence of rotational speed on microstructure and mechanical properties of dissimilar metal AISI 304-AISI 4140 continuous drive friction welds, J. iron. Steel Res. Int. 19(2012) 64-73.

DOI: 10.1016/s1006-706x(12)60154-x

Google Scholar

[4] D. Anantha padmanaban, V. Seshagiri Rao, Nikhil Abraham, K. Prasad Rao, A study of mechanical properties of friction welded mild steel to stainless steel joints, Mater. Des. 30 (2009) 2642–2646.

DOI: 10.1016/j.matdes.2008.10.030

Google Scholar

[5] H.T. Nu, N.H. Loc, P. Luu, Influence of the rotary friction welding parameters on the microhardness and joint strength of Ti6Al4V alloys, J. Eng. Manu. 235 (2020) 795-805.

DOI: 10.1177/0954405420972549

Google Scholar

[6] R. Winiczenko, Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints, Inter. J. Adv. Manu. Tech.84 (2015) 1-16.

DOI: 10.1007/s00170-015-7751-5

Google Scholar

[7] R Paventhan, P.R. Lakshmi narayanan, V. Balasubramanian, Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel, J. Iron. Steel. Res. Int. 19 (2012) 66-71.

DOI: 10.1016/s1006-706x(12)60049-1

Google Scholar

[8] P. Hariprasath, P. Sivaraj, V. Balasubramanian, A Critical Assessment on Rotary Friction Welded High Strength Armor Grade Aluminum Alloy Joints, Phy. Meta. Metall. 122 (2021) 1401–1408.

DOI: 10.1134/s0031918x21130044

Google Scholar

[9] J. Alex Anandaraj, S. Rajakumar, V. Balasubramanian, S Kavitha, Influence of process parameters on hot tensile behavior of rotary friction welded In 718/AISI 410 dissimilar joints, CIRP. J. Manu. Sci. Tech. 35 (2021) 830-838.

DOI: 10.1016/j.cirpj.2021.09.010

Google Scholar

[10] H.R. Lashgari, S. Li, C. Kong, M. Asnavandi, Sh. Zangeneh, Rotary friction welding of additively manufactured 17-4PH stainless steel, J. Manu. Pro. 64 (2021) 1517–1528.

DOI: 10.1016/j.jmapro.2021.03.008

Google Scholar

[11] R. Paventhan, P.R. Lakshmi narayanan, V. Balasubramanian, Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel, J. Iron. Steel. Res. Inter. 19 (2012) 66-71.

DOI: 10.1016/s1006-706x(12)60049-1

Google Scholar

[12] Y.S. Kong, M. Cheppu, Y.W. Park, Effect of heating time on thermo mechanical behaviour of friction-welded A105 bar and A312 pipe joints, Trans. Ind. Inst. Met. 73 (2020) 1433-1438.

DOI: 10.1007/s12666-020-01900-4

Google Scholar

[13] GK. Padhy, CS. Wu, S. Gao, Friction stir based welding and processing technologies-process, parameters, microstructures and applications: a review, J. Mater. Sci. Tech. 34 (2018) 1-38.

DOI: 10.1016/j.jmst.2017.11.029

Google Scholar

[14] E. Bayraktar ,D. Kaplan , L. Devillers, J.P. Chevalie. Grain growth mechanism during the welding of interstitial free (IF) steels, Journal of Materials Processing Technology 189 (2007) 114–125.

DOI: 10.1016/j.jmatprotec.2007.01.012

Google Scholar

[15] P. Sivaraj, P. Hariprasath, C. Rajarajan, and V. Balasubramanian, Analysis of grain refining and subsequent coarsening along on adjacent zone of friction stir welded armor grade aluminum alloy joints, Mater. Res. Express. 6(2019) 1-9.

DOI: 10.1088/2053-1591/ab0e37

Google Scholar