Metallic Oxide Nanoparticle from Agricultural Waste: A Review on Composition and Application

Article Preview

Abstract:

The rapid advancement in the extraction method of metallic oxide nanoparticles from agricultural waste has led to the significant use of agriculture waste in the nanotechnology industry because the use of chemical procedures in the production of metallic oxide nanoparticles produces hazardous toxic compounds that are dangerous to the ecosystem. In particular, this article examines the creation of silicon dioxide (silica) nanoparticles from agricultural waste. Environmental cleanup and wastewater purification are only two examples of the many areas where sand-sized silica particles (SNPs) have shown promising results. rural, agricultural, etc. The lack of toxicity of these particles has been demonstrated, making them an excellent tool for biomedical study. Additionally, because of the particles' ability to mobilize molecules onto their interior and external surfaces, they constitute good transporters for both biotic and non-biotic substances. In this regard, the current paper provides a thorough assessment of the sources of agricultural waste used in producing silica nanoparticles as well as the processes used to create it. The report also examines SNPs' most recent applications in a number of fields and discusses the technology's potential for the future. Keywords: Fuel additives; ethanol; brake power; Internal combustion engine; fuel

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-174

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L X-q ZW (2006) Iron Nanoparticles: The Core−Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir 22:4638–4642.

DOI: 10.1021/la060057k

Google Scholar

[2] Azat S, Arkhangelsky E, Papathanasiou T et al (2020) Synthesis of Biosourced Silica-Ag Nanocomposites and Amalgamation Reaction with Mercury in Aqueous Solutions. C R Chim 23:77–92. https://doi.org/10.5802/crchim.19.

DOI: 10.5802/crchim.19

Google Scholar

[3] L Rodríguez-Sánchez MBML-Q (2000) Electrochemical Synthesis of Silver Nanoparticles. J Phys Chem B 104:9683–9688.

Google Scholar

[4] VK Sharma RYYL (2009) Silver Nanoparticles: Green Synthesis and their Antimicrobial Activities. Adv Colloid Interf Sci 145:83–96.

Google Scholar

[5] SS Shankar ARAAMS (2005) Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared- Absorbing Optical Coatings. Chem Mater 17:566–572.

DOI: 10.1021/cm048292g

Google Scholar

[6] Thomas B, Raj MC, Athira BK et al (2018) Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem Rev 118:11575–11625.

DOI: 10.1021/acs.chemrev.7b00627

Google Scholar

[7] Zheng G, He J, Kumar V, et al Discrete metal nanoparticles with plasmonic chirality. pubs.rsc.org.

Google Scholar

[8] Han Q, Chen L, Li W et al (2018) Self-Assembled ThreeDimensional Double Network Graphene Oxide/Polyacrylic Acid Hybrid Aerogel for Removal of Cu2+ from Aqueous Solution. Environ Sci Pollut Res 25:34438–34447. https://doi. org/10.1007/s11356-018-3409-9.

DOI: 10.1007/s11356-018-3409-9

Google Scholar

[9] Ndolomingo MJ, Bingwa N, Meijboom R (2020) Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J Mater Sci 55:6195–6241.

DOI: 10.1007/s10853-020-04415-x

Google Scholar

[10] Gao C, Lyu F, Yin Y (2021) Encapsulated Metal Nanoparticles for Catalysis. Chem Rev 121:834–881. https://doi.org/10.1021/ acs.chemrev.0c00237.

DOI: 10.1021/acs.chemrev.0c00237

Google Scholar

[11] Iriarte-Mesa C, López YC, Matos-Peralta Y et al (2020) Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aiming to Electrochemical Applications. Springer, Cham, p.93–132.

DOI: 10.1007/978-3-030-55502-3_4

Google Scholar

[12] Ndolomingo MJ, Bingwa N, Meijboom R (2020) Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. J Mater Sci 55:6195–6241. https:// doi.org/10.1007/s10853-020-04415-x.

DOI: 10.1007/s10853-020-04415-x

Google Scholar

[13] A Ali MHZI ul HAPJAAH (2016) Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol Sci Appl 9:49–67.

Google Scholar

[14] Liou TH, Yang CC (2011) Synthesis and Surface Characteristics of Nanosilica Produced From Alkali-Extracted Rice Husk Ash. Mater Sci Eng B Solid-State Mater Adv Technol 176:521–529. https://doi.org/10.1016/j.mseb.2011.01.007.

DOI: 10.1016/j.mseb.2011.01.007

Google Scholar

[15] R Narayan UNARSG (2018) Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 10:118.

DOI: 10.3390/pharmaceutics10030118

Google Scholar

[16] . Liu S, Han MY (2010) Silica-Coated Metal Nanoparticles. Chem. - An Asian J. 5:36–45.

Google Scholar

[17] A Liberman NMWTAK (2014) Synthesis and Surface Functionalization of Silica Nanoparticles for Nanomedicine. Surf Sci Rep 69:132–158.

Google Scholar

[18] Silva G (2004) Introduction to Nanotechnology and its Applications to Medicine. Surg Neurol 61:216–220.

Google Scholar

[19] Zhao S, Siqueira G, Drdova S et al (2020) Additive Manufacturing of Silica Aerogels. Nature 584:387–392. https://doi.org/ 10.1038/s41586-020-2594-0.

Google Scholar

[20] Le VH, Thuc CNH, Thuc HH (2013) Synthesis of Silica Nanoparticles from Vietnamese Rice Husk by Sol–Gel Method. Nanoscale Res Lett 8:58. https://doi.org/10.1186/ 1556-276x-8-58.

DOI: 10.1186/1556-276x-8-58

Google Scholar

[21] Sharifnasab H, Alamooti MY (2017) Preparation of Silica Powder from Rice Husk. Agric Eng Int CIGR J 19:158–161.

Google Scholar

[22] Sriwuryandari L, Priantoro EA, Janetasari SA et al (2020) Utilization of Rice Husk (Oryza Sativa) for Amorphous Biosilica (SiO2) Production as a Bacterial Attachment. IOP Conf Ser Earth Environ Sci 483:12023. https://doi.org/10.1088/1755- 1315/483/1/012023.

DOI: 10.1088/1755-1315/483/1/012023

Google Scholar

[23] Du D, Jiang Y, Feng J, et al (2020) Facile Synthesis of Silica Aerogel Composites via Ambient-Pressure Drying without Surface Modifcation or Solvent Exchange. Vacuum 173https:// doi.org/10.1016/j.vacuum.2019.109117.

DOI: 10.1016/j.vacuum.2019.109117

Google Scholar

[24] Guzel Kaya G, Deveci H (2020) Synergistic Efects of Silica Aerogels/Xerogels on Properties of Polymer Composites: A Review. J Ind Eng Chem 89:13–27. https://doi.org/10.1016/j. jiec.2020.05.019.

DOI: 10.1016/j.jiec.2020.05.019

Google Scholar

[25] Guzel Kaya G, Yilmaz E, Deveci H (2020) Synthesis of Sustainable Silica Xerogels/Aerogels Using Inexpensive Steel Slag and Bean Pod Ash: A Comparison Study. Adv Powder Technol 31:926–936. https://doi.org/10.1016/j.apt.2019.12.013.

DOI: 10.1016/j.apt.2019.12.013

Google Scholar

[26] Wong YJ, Zhu L, Teo WS et al (2011) Revisiting the Stöber Method: Inhomogeneity in Silica Shells. J Am Chem Soc 133:11422–11425. https://doi.org/10.1021/ja203316q.

DOI: 10.1021/ja203316q

Google Scholar

[27] Xu J, Ren D, Chen N et al (2021) A Facile Cooling Strategy for the Preparation of Silica Nanoparticles with Rough Surface Utilizing a Modifed Stöber System. Colloids Surfaces A Physicochem Eng Asp 625:126845. https://doi.org/10.1016/j. colsurfa.2021.126845.

DOI: 10.1016/j.colsurfa.2021.126845

Google Scholar

[28] Prajapati JP, Das D, Katlakunta S et al (2021) Synthesis and Characterization of Ultrasmall Cu2O Nanoparticles on Silica Nanoparticles Surface. Inorganica Chim Acta 515:120069. https://doi.org/10.1016/j.ica.2020.120069.

DOI: 10.1016/j.ica.2020.120069

Google Scholar

[29] Jeelani PG, Mulay P, Venkat R, Ramalingam C (2020) Multifaceted Application of Silica Nanoparticles. A Review. Silicon 12:1337–1354. https://doi.org/10.1007/s12633-019-00229-y.

DOI: 10.1007/s12633-019-00229-y

Google Scholar

[30] P Mohanpuria NRSY (2008) Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J Nanopart Res 10:507–517.

DOI: 10.1007/s11051-007-9275-x

Google Scholar

[31] V Bansal DRABKAASAAMS (2005) Fungus-Mediated Biosynthesis of Silica and Titania Particles. J Mater Chem 15:2583–2589.

Google Scholar

[32] JN Cha GSDMTD (2000) Biomimetic Synthesis of Ordered Silica Structures Mediated by Block Copolypeptides. Nature 403:289–292.

DOI: 10.1038/35002038

Google Scholar

[33] Nguyen H, JamaliMoghadam M, Moayedi H (2019) Agricultural Wastes Preparation, Management, and Applications in Civil Engineering: A Review. J Mater Cycles Waste Manag 21:1039–1051. https://doi.org/10.1007/s10163-019-00872-y.

DOI: 10.1007/s10163-019-00872-y

Google Scholar

[34] Zou Y, Yang T (2019) Rice husk, rice husk ash and their applications. In: Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization. Elsevier, p.207–246.

DOI: 10.1016/b978-0-12-812828-2.00009-3

Google Scholar

[35] Pandey LM (2021) Surface Engineering of Nano-Sorbents for the Removal of Heavy Metals: Interfacial Aspects. J Environ Chem Eng 9https://doi.org/10.1016/j.jece.2020.104586.

DOI: 10.1016/j.jece.2020.104586

Google Scholar

[36] Akhter F, Soomro SA, Jamali AR et al (2021) Rice husk ash as green and sustainable biomass waste for construction and renewable energy applications: a review. Biomass Convers Biorefnery. https://doi.org/10.1007/s13399-021-01527-5.

DOI: 10.1007/s13399-021-01527-5

Google Scholar

[37] Nguyen TH, Mai NT, Reddy VRM et al (2020) Synthesis of Silica Aerogel Particles and its Application to Thermal Insulation Paint. Korean J Chem Eng 37:1803–1809. https://doi.org/ 10.1007/s11814-020-0574-6.

DOI: 10.1007/s11814-020-0574-6

Google Scholar

[38] Akhter F, Soomro SA, Inglezakis VJ (2021) Silica Aerogels; A Review of Synthesis, Applications and Fabrication of Hybrid Composites. J Porous Mater. https://doi.org/10.1007/ s10934-021-01091-3.

DOI: 10.1007/s10934-021-01091-3

Google Scholar

[39] Nayak PP, Datta AK (2021) Synthesis of SiO2-Nanoparticles from Rice Husk Ash and its Comparison with Commercial Amorphous Silica through Material Characterization. Silicon 13:1209–1214. https://doi.org/10.1007/s12633-020-00509-y.

DOI: 10.1007/s12633-020-00509-y

Google Scholar

[40] Kamari S, Ghorbani F (2020) Extraction of highly Pure Silica from Rice Husk as an Agricultural by-Product and its Application in the Production of Magnetic Mesoporous Silica MCM– Biomass Convers Biorefnery. https://doi.org/10.1007/ s13399-020-00637-w.

DOI: 10.1007/s13399-020-00637-w

Google Scholar

[41] Bakar RA, Yahya R, Gan SN (2016) Production of High Purity Amorphous Silica from Rice Husk. Procedia Chem 19:189– 195. https://doi.org/10.1016/j.proche.2016.03.092.

DOI: 10.1016/j.proche.2016.03.092

Google Scholar

[42] Jit Sarkar, Deepanjan Mridha, Joy Sarkar, Jonathan Tersur Orasugh, Bhuman Gangopadhyay, Dipankar Chattopadhyay, Tarit Roychowdhury, Krishnendu Acharya, (2021) Synthesis of nanosilica from agricultural wastes and its multifaceted applications: A review, Biocatalysis and Agricultural Biotechnology, Volume 37, 2021, 102175.

DOI: 10.1016/j.bcab.2021.102175

Google Scholar

[43] A. Galvagno, M. Prestipino, G. Zafarana, and V. Chiodo, Analysis of an integrated agro-waste gasification and 120 kW SOFC CHP system: modeling and experimental investigation,, Energy Procedia, vol. 101, p.528–535, (2016).

DOI: 10.1016/j.egypro.2016.11.067

Google Scholar

[44] A. Nourbakhsh and A. Ashori, Wood plastic composites from agro-waste materials: Analysis of mechanical properties,, Bioresource technology, vol. 101, no. 7, p.2525–2528, (2010).

DOI: 10.1016/j.biortech.2009.11.040

Google Scholar

[45] M. V. Madurwar, R. V. Ralegaonkar, and S. A. Mandavgane, Application of agro-waste for sustainable construction materials: A review,, construction and Building materials, vol. 38, p.872–878, (2013).

DOI: 10.1016/j.conbuildmat.2012.09.011

Google Scholar

[46] S. Charola, R. Yadav, P. Das, and S. Maiti, Fixed-bed adsorption of Reactive Orange 84 dye onto activated carbon prepared from empty cotton flower agro-waste,, Sustainable Environment Research, vol. 28, no. 6, p.298–308, (2018).

DOI: 10.1016/j.serj.2018.09.003

Google Scholar

[47] M. I. H. Mondal, M. S. Yeasmin, and M. S. Rahman, Preparation of food grade carboxymethyl cellulose from corn husk agrowaste,, International Journal of Biological Macromolecules, vol. 79, p.144–150, (2015).

DOI: 10.1016/j.ijbiomac.2015.04.061

Google Scholar

[48] S. Mor, K. Chhoden, and K. Ravindra, Application of agro-waste rice husk ash for the removal of phosphate from the wastewater,, Journal of Cleaner Production, vol. 129, p.673–680, (2016).

DOI: 10.1016/j.jclepro.2016.03.088

Google Scholar

[49] B. P. Narasaiah and B. K. Mandal, Remediation of azo-dyes based toxicity by agro-waste cotton boll peels mediated palladium nanoparticles,, Journal of Saudi Chemical Society, vol. 24, no. 2, p.267–281, (2020).

DOI: 10.1016/j.jscs.2019.11.003

Google Scholar

[50] B. Vijila, E. E. Gladis, J. M. A. Jose, T. Sharmila, and J. Joseph, Removal of fluoride with rice husk derived adsorbent from agro waste materials,, Materials Today: Proceedings, vol. 45, p.2125–2129, 2021.https://doi.org/10.1016/j.bcab.2021.102175.

DOI: 10.1016/j.matpr.2020.09.729

Google Scholar

[51] Askaruly K, Azat S, Sartova Z et al (2020) Obtaining and Characterization of Amorphous Silica from Rice Husk. J Chem Technol Metall 55:88–97.

Google Scholar

[52] Iacovidou, E., J. Hahladakis, I. Deans, C. Velis, and P. Purnell. 2018. Technical Properties of Biomass and Solid Recovered Fuel (SRF) Co-fired with Coal: Impact on Multi-dimensional Resource Recovery Value., Waste Management 73: 535–545.

DOI: 10.1016/j.wasman.2017.07.001

Google Scholar

[53] Yadav, P., and S. R. Samadder. 2018. A Critical Review of the Life Cycle Assessment Studies on Solid Waste Management in Asian Countries., Journal of Cleaner Production 185: 492–515.

DOI: 10.1016/j.jclepro.2018.02.298

Google Scholar

[54] Murillo, A., and A. Cristina. 2014. A Decision Support Model for the Assessment of Bio-resource Management Systems., Thesis.

Google Scholar

[55] Drosg, B., W. Fuchs, T. A. Seadi, M. Madsen, and B. Linke. 2015. Nutrient Recovery by Biogas Digestate Processing,. IEA Bioenergy Dublin.Vol. 40.

Google Scholar

[56] Adriano, D. C., A. L. Page, A. A. Elseewi, A. C. Chang, and I. Straughan. 1980. Utilization and Disposal of Fly Ash and Other Coal Residues in Terrestrial Ecosystems: A Review 1., Journal of Environmental Quality 9: 333–344.

DOI: 10.2134/jeq1980.00472425000900030001x

Google Scholar

[57] Werther, J., M. Saenger, E.-U. Hartge, T. Ogada, and Z. Siagi. 2000. Combustion of Agricultural Residues., Progress in Energy and Combustion Science 26: 1–27.

DOI: 10.1016/s0360-1285(99)00005-2

Google Scholar

[58] Georgieva, T. I., M. J. Mikkelsen, and B. K. Ahring. 2008. Ethanol Production from Wet-exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor., Applied Biochemistry and Biotechnology 145: 99–110.

DOI: 10.1007/s12010-007-8014-1

Google Scholar

[59] Demirbas, A. 2011. Waste Management, Waste Resource Facilities and Waste Conversion Processes., Energy Conversion and Management 52: 1280–1287.

DOI: 10.1016/j.enconman.2010.09.025

Google Scholar

[60] Kazmi, Syed M. S., S Abbas, M. A. Saleem, M. J. Munir, and A. Khitab. 2016. Manufacturing of Sustainable Clay Bricks: Utilization of Waste Sugarcane Bagasse and Rice Husk Ashes., Construction and Building Materials 120 (September): 29–41.

DOI: 10.1016/j.conbuildmat.2016.05.084

Google Scholar

[61] Bhagiyalakshmi, M, L. J. Yun, R. Anuradha, and H. T. Jang. 2010. Utilization Of Rice Husk Ash as Silica Source for The Synthesis Of Mesoporous Silicas and Their Application to Co2 Adsorption Through Tren/tepa Grafting., Journal Of Hazardous Materials 175 (1): 928–38.

DOI: 10.1016/j.jhazmat.2009.10.097

Google Scholar

[62] Frías, M., E. Villar-Cociña, and E. Valencia-Morales. 2007. Characterisation Of Sugar Cane Straw Waste as Pozzolanic Material for Construction: Calcining Temperature and Kinetic Parameters., Waste Management 27 (4): 533–38.

DOI: 10.1016/j.wasman.2006.02.017

Google Scholar

[63] Binod, P., R. Sindhu, R. Rani Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey. 2010. Bioethanol Production from Rice Straw: an Overview., Bioresource Technology, Special Issue on Lignocellulosic Bioethanol: Current Status and Perspectives 101 (13): 4767–74.

DOI: 10.1016/j.biortech.2009.10.079

Google Scholar

[64] Adesanya, D. A., and A. A. Raheem. 2009. Development Of Corn Cob Ash Blended Cement., Construction and Building Materials 23 (1): 347–52.

DOI: 10.1016/j.conbuildmat.2007.11.013

Google Scholar

[65] Purnomo, C. W., C. Salim, and H. Hinode. 2012. Synthesis Of Pure Na–x and Na–a Zeolite from Bagasse Fly Ash., Microporous and Mesoporous Materials 162: 6–13.

DOI: 10.1016/j.micromeso.2012.06.007

Google Scholar

[66] Villar-Cociña, E., E. V. Morales, S. F. Santos, H. Savastano, and M. Frías. 2011. Pozzolanic Behavior Of Bamboo Leaf Ash: Characterization and Determination Of The Kinetic Parameters., Cement and Concrete Composites 33 (1): 68–73.

DOI: 10.1016/j.cemconcomp.2010.09.003

Google Scholar

[67] Lanning, F. C., B. W. X. Ponnaiya, and C. F. Crumpton. 1958. The Chemical Nature Of Silica in Plants. 1., Plant Physiology 33 (5): 339–43.

DOI: 10.1104/pp.33.5.339

Google Scholar

[68] Zhang, L., C. C. Xu, and P. Champagne. 2010. Overview of Recent Advances in Thermo-chemical Conversion of Biomass., Energy Conversion and Management 51: 969–982.

DOI: 10.1016/j.enconman.2009.11.038

Google Scholar

[69] Norsuraya, S., H. Fazlena, and R. Norhasyimi. 2016. Sugarcane Bagasse as a Renewable Source of Silica to Synthesize Santa Barbara Amorphous-15 (SBA-15)., Procedia Engineering 148: 839–846.

DOI: 10.1016/j.proeng.2016.06.627

Google Scholar

[70] Adebisi, J., J. Agunsoye, S. Bello, I. Ahmed, O. Ojo, and S. Hassan. 2017. Potential of Producing Solar Grade Silicon Nanoparticles from Selected Agro-wastes: A Review., Solar Energy 142: 68–86.

DOI: 10.1016/j.solener.2016.12.001

Google Scholar

[71] Falk, G., G. Shinhe, L. Teixeira, E. Moraes, and A. N. de Oliveira. 2019. Synthesis of Silica Nanoparticles from Sugarcane Bagasse Ash and Nano-silicon via Magnesiothermic Reactions., Ceramics International 45: 21618–21624.

DOI: 10.1016/j.ceramint.2019.07.157

Google Scholar

[72] Mor, S., C. K. Manchanda, S. K. Kansal, and K. Ravindra. 2017. Nanosilica Extraction from Processed Agricultural Residue Using Green Technology., Journal of Cleaner Production 143: 1284–1290.

DOI: 10.1016/j.jclepro.2016.11.142

Google Scholar

[73] Patel, K. G., R. R. Shettigar, and N. M. Misra. 2017. Recent Advance in Silica Production Technologies from Agricultural Waste Stream–., Journal of Advanced Agricultural Technologies (3): 274–79. https://doi.org/10.18178/joaat.4.3.274-279.

DOI: 10.18178/joaat.4.3.274-279

Google Scholar

[74] Zamani, A., A. P. Marjani, and Z. Mousavi. 2019. Agricultural Waste Biomass-Assisted Nanostructures: Synthesis and Application., Green Processing and Synthesis 8: 421–429.

DOI: 10.1515/gps-2019-0010

Google Scholar

[75] Li, Y., X. Ding, Y. Guo, C. Rong, L. Wang, Y. Qu, X. Ma, and Z. Wang. 2011. A New Method of Comprehensive Utilization of Rice Husk., Journal of Hazardous Materials 186: 2151–2156.

DOI: 10.1016/j.jhazmat.2011.01.013

Google Scholar

[76] Venkateswaran, S., R. Yuvakkumar, and V. Rajendran. 2013. Nano Silicon from Nano Silica Using Natural Resource (Rha) for Solar Cell Fabrication., Phosphorus, Sulfur, and Silicon and the Related Elements 188: 1178–1193.

DOI: 10.1080/10426507.2012.740106

Google Scholar

[77] Liou, T.-H., and -C.-C. Yang. 2011. Synthesis and Surface Characteristics of Nanosilica Produced from Alkali-extracted Rice Husk Ash., Materials Science and Engineering: B 176: 521–529.

DOI: 10.1016/j.mseb.2011.01.007

Google Scholar

[78] Carmona, V. B., R. M. Oliveira, W. T. L. Silva, L. H. C. Mattoso, and J. M. Marconcini. 2013. Nanosilica from Rice Husk: Extraction and Characterization., Industrial Crops and Products 43: 291–296.

DOI: 10.1016/j.indcrop.2012.06.050

Google Scholar

[79] Lee, J. H., J. H. Kwon, J.-W. Lee, H. Lee, J. H. Chang, and B.-I. Sang. 2017. Preparation of High Purity Silica Originated from Rice Husks by Chemically Removing Metallic Impurities., Journal of Industrial and Engineering Chemistry 50: 79–85.

DOI: 10.1016/j.jiec.2017.01.033

Google Scholar

[80] Mor, S., C. K. Manchanda, S. K. Kansal, and K. Ravindra. 2017. Nanosilica Extraction from Processed Agricultural Residue Using Green Technology., Journal of Cleaner Production 143: 1284–1290.

DOI: 10.1016/j.jclepro.2016.11.142

Google Scholar

[81] Okoronkwo, E. A., P. E. Imoisili, and S. O. O. Olusunle. 2013. Extraction and Characterization of Amorphous Silica from Corn Cob Ash by Sol-Gel Method., 3: 6.Chemistry and Materials Research 3 (4): 68–72.

Google Scholar

[82] Shim, J., P. Velmurugan, and B.-T. Oh. 2015. Extraction and Physical Characterization of Amorphous Silica Made from Corn Cob Ash at Variable pH Conditions via Sol Gel Processing., Journal of Industrial and Engineering Chemistry 30: 249–253.

DOI: 10.1016/j.jiec.2015.05.029

Google Scholar

[83] YaNing, Z., A. E. Ghaly, and L. BingXi. 2012. Physical Properties of Rice Residues as Affected by Variety and Climatic and Cultivation Conditions in Three Continents., American Journal of Applied Sciences 9: 1757–1768.

DOI: 10.3844/ajassp.2012.1757.1768

Google Scholar

[84] Chen, H., F. Wang, C. Zhang, Y. Shi, G. Jin, and S. Yuan. 2010. Preparation of Nano-silica Materials: The Concept from Wheat Straw., Journal of Non-Crystalline Solids 356: 2781–2785.

DOI: 10.1016/j.jnoncrysol.2010.09.051

Google Scholar

[85] Rafiee, E., S. Shahebrahimi, M. Feyzi, and M. Shaterzadeh. 2013. Optimization of Synthesis and Characterization of Nanosilica Produced from Rice Husk (A Common Waste Material)., International Nano Letters 2: 29.

DOI: 10.1186/2228-5326-2-29

Google Scholar

[86] Carmona, V. B., R. M. Oliveira, W. T. L. Silva, L. H. C. Mattoso, and J. M. Marconcini. 2013. Nanosilica from Rice Husk: Extraction and Characterization., Industrial Crops and Products 43: 291–296.

DOI: 10.1016/j.indcrop.2012.06.050

Google Scholar

[87] Zemnukhova, L. A., T. A. Babushkina, T. P. Klimova, A. M. Ziatdinov, and A. N. Kholomeiydik. 2012. Structural Features of Amorphous Silica from Plants., Applied Magnetic Resonance 42: 577–584.

DOI: 10.1007/s00723-012-0332-y

Google Scholar

[88] Mohanraj, K., S. Kannan, S. Barathan, and G. Sivakumar. 2012. Preparation and Characterization of Nano SiO2 from Corn Cob Ash by Precipitation Method., Optoelectronics and Advanced Materials - Rapid Communications 6: 394–97.

Google Scholar

[89] Tang, Q., and T. Wang. 2005. Preparation of Silica Aerogel from Rice Hull Ash by Supercritical Carbon Dioxide Drying., The Journal of Supercritical Fluids 35: 91–94.

DOI: 10.1016/j.supflu.2004.12.003

Google Scholar

[90] Espíndola-Gonzalez, A., A. Martínez-Hernández, C. Angeles-Chávez, V. Castaño, and C. Velasco-Santos. 2010. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes., Nanoscale Research Letters 5: 1408.

DOI: 10.1007/s11671-010-9654-6

Google Scholar

[91] Bao, Z., M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, et al. 2007. Chemical Reduction of Three-dimensional Silica Micro-assemblies into Microporous Silicon Replicas., Nature 446: 172–175.

DOI: 10.1038/nature05570

Google Scholar

[92] Yermekova, Z., Z. Mansurov, and A. S. Mukasyan. 2010. Combustion Synthesis of Silicon Nanopowders., International Journal of Self-Propagating High-Temperature Synthesis 19: 94–101.

DOI: 10.3103/s1061386210020032

Google Scholar

[93] Ferreira-Leitão, V., L. M. F. Gottschalk, M. A. Ferrara, A. L. Nepomuceno, H. B. C. Molinari, and E. P. S. Bon. 2010. Biomass Residues in Brazil: Availability and Potential Uses., Waste Biomass Valorization 1: 65–76.

DOI: 10.1007/s12649-010-9008-8

Google Scholar

[94] Maheswari, T. L., M. S. I. Ahamed, and S. Duraisamy. 2017. Quality Assessment System for Object Oriented Structure., Journal of Computational and Theoretical Nanoscience 14: 1993–2014.

DOI: 10.1166/jctn.2017.6533

Google Scholar

[95] Srinivasan, R., and K. Sathiya. 2010. Experimental Study on Bagasse Ash in Concrete., The International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship 5: 60–66.

DOI: 10.24908/ijsle.v5i2.2992

Google Scholar

[96] Abdulkadir, T. S., D. O. Oyejobi, and A. A. Lawal. 2014. Evaluation of Sugarcane Bagasse Ash as a Replacement for Cement in Concrete Works., Acta Technica Corviniensis - Bulletin of Engineering Hunedoara 7: 71–76.

Google Scholar

[97] Patil R, Dongre R, Meshram J. Preparation of silica powder from rice husk. Journal of Applied Chemistry. 2014;27:26-29.

Google Scholar

[98] Ahfmad Alyosef H, Schneider D, Wassersleben S, Roggendorf H, Weiß M, Eilert A, et al. Meso/macroporous silica from miscanthus, cereal remnant pellets, and wheat straw. ACS Sustainable Chemistry & Engineering. 2015;3(9):2012-2021.

DOI: 10.1021/acssuschemeng.5b00275

Google Scholar

[99] Yang H, Liu B, Chen Y, Li B, Chen H. Influence of inherent silicon and metals in rice husk on the char properties and associated silica structure. Energy & Fuels. 2015;29(11):7327-7334.

DOI: 10.1021/acs.energyfuels.5b01617

Google Scholar

[100] Hamad M. Combustion of rice hulls in a static bed. Energy in Agriculture. 1981;1:311-315.

DOI: 10.1016/0167-5826(81)90027-9

Google Scholar

[101] Pitt N. Process for the Preparation of Siliceous Ashes: Google Patents; 1976; US3959007A.

Google Scholar

[102] Soltani N, Bahrami A, Pech-Canul M, González L. Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal. 2015;264:899-935.

DOI: 10.1016/j.cej.2014.11.056

Google Scholar

[103] Genieva S, Turmanova S, Dimitrova A, Vlaev L. Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry. 2008;93(2):387-396.

DOI: 10.1007/s10973-007-8429-5

Google Scholar

[104] Luan TC, Chou TC. Recovery of silica from the gasification of rice husks/coal in the presence of a pilot flame in a modified fluidized bed. Industrial & Engineering Chemistry Research. 1990;29(9):1922-1927.

DOI: 10.1021/ie00105a026

Google Scholar

[105] Zulkifli NSC, Ab Rahman I, Mohamad D, Husein A. A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceramics International. 2013;39(4):4559-4567.

DOI: 10.1016/j.ceramint.2012.11.052

Google Scholar

[106] Hassan A, Abdelghny A, Elhadidy H, Youssef A. Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol–gel method. Journal of Sol-Gel Science and Technology. 2014;69(3):465-472.

DOI: 10.1007/s10971-013-3245-9

Google Scholar

[107] Liou T-H, Yang C-C. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Materials science and engineering: B. 2011;176(7):521-529.

DOI: 10.1016/j.mseb.2011.01.007

Google Scholar

[108] Awizar DA, Othman NK, Jalar A, Daud AR, Rahman IA, Al-Hardan N. Nanosilicate extraction from rice husk ash as green corrosion inhibitor. International Journal of Electrochemical Science. 2013;8(2):1759-1769.

DOI: 10.4028/www.scientific.net/msf.756.266

Google Scholar

[109] Haq IU, Akhtar K, Malik A. Effect of experimental variables on the extraction of silica from the rice husk ash. Journal of the Chemical Society of Pakistan. 2014;36(3):382.

Google Scholar

[110] Cui J, Sun H, Luo Z, Sun J, Wen Z. Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process. Materials Letters. 2015;156:42-45.

DOI: 10.1016/j.matlet.2015.04.134

Google Scholar

[111] Masnar A, Coorey R. Application of sago pith waste and nanosilica from rice husk ash as hybrid bio-nanofiller composite for food plastic packaging. Ukrainian Food Journal. 2017;6(4):599-759.

DOI: 10.24263/2304-974x-2017-6-4-4

Google Scholar

[112] Selvakumar K, Umesh A, Ezhilkumar P, Gayatri S, Vinith P, Vignesh V. Extraction of silica from burnt paddy husk. International Journal of ChemTech Research. 2014;6(9):4455-4459.

Google Scholar

[113] Zhang Z, He W, Zheng J, Wang G, Ji J. Rice husk ash-derived silica nanofluids: Synthesis and stability study. Nanoscale Research Letters. 2016;11(1):502.

DOI: 10.1186/s11671-016-1726-9

Google Scholar

[114] Adam F, Chew T-S, Andas J. A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass. Journal of Sol-Gel Science and Technology. 2011;59(3):580-583.

DOI: 10.1007/s10971-011-2531-7

Google Scholar

[115] Rungrodnimitchai S, Phokhanusai W, Sungkhaho N. Preparation of silica gel from rice husk ash using microwave heating. Journal of Metals, Materials and Minerals. 2017;19(2):45-50.

Google Scholar

[116] Faizul C, Abdullah C, Fazlul B. Extraction of silica from palm ash via citric acid leaching treatment. Advances in Environmental Biology. 2013a;7(12):3690-3695.

DOI: 10.4028/www.scientific.net/amr.795.701

Google Scholar

[117] Carmona V, Oliveira R, Silva W, Mattoso L, Marconcini J. Nanosilica from rice husk: Extraction and characterization. Industrial Crops and Products. 2013;43:291-296.

DOI: 10.1016/j.indcrop.2012.06.050

Google Scholar

[118] Mahmud A, Megat-Yusoff P, Ahmad F, Farezzuan AA. Acid leaching as efficient chemical treatment for rice husk in production of amorphous silica nanoparticles. ARPN Journal of Engineering and Applied Sciences. 2016;11(22):13384.

Google Scholar

[119] Rafiee E, Shahebrahimi S. Nano silica with high surface area from rice husk as a support for 12-tungstophosphoric acid: An efficient nanocatalyst in some organic reactions. Chinese Journal of Catalysis. 2012;33(7-8):1326-1333.

DOI: 10.1016/s1872-2067(11)60420-8

Google Scholar

[120] Bakar RA, Yahya R, Gan SN. Production of high purity amorphous silica from rice husk. Procedia Chemistry. 2016;19:189-195.

DOI: 10.1016/j.proche.2016.03.092

Google Scholar

[121] Jatoi AS, Hashmi Z, Adriyani R et al (2021) Recent Trends and Future Challenges of Pesticide Removal Techniques - A Comprehensive Review. J Environ Chem Eng 9:105571. https://doi. org/10.1016/j.jece.2021.105571.

DOI: 10.1016/j.jece.2021.105571

Google Scholar

[122] El-Shetehy M, Moradi A, Maceroni M et al (2021) Silica Nanoparticles Enhance Disease Resistance in Arabidopsis Plants. Nat Nanotechnol 16:344–353. https://doi.org/10.1038/ s41565-020-00812-0.

DOI: 10.1038/s41565-020-00812-0

Google Scholar

[123] Pereira ADES, Oliveira HC, Fraceto LF, Santaella C (2021) Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials 11:1–29.

DOI: 10.3390/nano11020267

Google Scholar

[124] F Torney BTVLKW (2007) Mesoporous Silica Nanoparticles Deliver DNA and Chemicals Into Plants. Nat Nanotechnol 2:295–300.

Google Scholar

[125] L X-q ZW (2006) Iron Nanoparticles: The Core−Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir 22:4638–4642.

DOI: 10.1021/la060057k

Google Scholar

[126] MH Siddiqui MA-W (2014) Role of nano-SiO 2 in Germination of Tomato (Lycopersicum esculentum seeds mill.). Saudi J Biol Sci 21:13–17.

DOI: 10.1016/j.sjbs.2013.04.005

Google Scholar

[127] Zolghadrnasab M, Mousavi A, Farmany A, Arpanaei A (2021) Ultrasound-Mediated Gene Delivery Into Suspended Plant Cells Using Polyethyleneimine-Coated Mesoporous Silica Nanoparticles. Ultrason Sonochem 73:105507. https://doi.org/10.1016/j. ultsonch.2021.105507.

DOI: 10.1016/j.ultsonch.2021.105507

Google Scholar

[128] H Song WYPJWWXWLYYZ (2016) Efects of Chitosan/NanoSilica on Postharvest Quality and Antioxidant Capacity of Loquat Fruit during Cold Storage. Postharvest Biol Technol 119:41–48.

DOI: 10.1016/j.postharvbio.2016.04.015

Google Scholar

[129] A Mirzadeh MK (2007) The Efect of Composition and DrawDown Ratio on Morphology and Oxygen Permeability of Polypropylene Nanocomposite Blown Films. Eur Polym J 43:3757–3765.

DOI: 10.1016/j.eurpolymj.2007.06.014

Google Scholar

[130] Azeredo H (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253.

DOI: 10.1016/j.foodres.2009.03.019

Google Scholar

[131] . Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev 4:37–59. https://doi.org/10.1002/cben.201600010.

DOI: 10.1002/cben.201600010

Google Scholar

[132] Yang X, Shen Z, Zhang B et al (2013) Silica nanoparticles capture atmospheric lead: Implications in the treatment of environmental heavy metal pollution. Chemosphere 90:653–656. https:// doi.org/10.1016/j.chemosphere.2012.09.033.

DOI: 10.1016/j.chemosphere.2012.09.033

Google Scholar

[133] El-Gazzar N, Almanaa TN, Reda RM et al (2021) Assessment the Using of Silica Nanoparticles (Sio2nps) Biosynthesized from Rice Husks By Trichoderma Harzianum Mf780864 as Water Lead Adsorbent for Immune Status of Nile Tilapia (Oreochromis Niloticus). Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2021. 05.027.

DOI: 10.1016/j.sjbs.2021.05.027

Google Scholar

[134] He C, Ren L, Zhu W et al (2015) Removal of mercury from aqueous solution using mesoporous silica nanoparticles modifed with polyamide receptor. J Colloid Interface Sci 458:229–234. https:// doi.org/10.1016/j.jcis.2015.07.054.

DOI: 10.1016/j.jcis.2015.07.054

Google Scholar

[135] Akhter F, Soomro SA, Siddique M, Ahmed M (2021) Plant and Non-plant based Polymeric Coagulants for Wastewater Treatment: A Review. J Kejuruter 33:175–181. https://doi.org/10. 17576/jkukm-2021-33(2)-02.

DOI: 10.17576/jkukm-2021-33(2)-02

Google Scholar

[136] Sibag M, Choi BG, Suh C et al (2015) Inhibition of total oxygen uptake by silica nanoparticles in activated sludge. J Hazard Mater 283:841–846. https://doi.org/10.1016/j.jhazmat.2014.10.032.

DOI: 10.1016/j.jhazmat.2014.10.032

Google Scholar

[137] Park SJ, Ko YS, Jung H et al (2018) Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci Total Environ 625:477–485. https://doi.org/10.1016/j.scitotenv.2017.12.318.

DOI: 10.1016/j.scitotenv.2017.12.318

Google Scholar