Experimental and Theoretical Study of Adsorption/Desorption Isotherms of Straw Earth Material Used in the Construction of Shell Huts in the Far North of Cameroon

Article Preview

Abstract:

Earth-based materials (EBM) provides a valuable avenue for improving thermal comfort, energy consumption, indoor air quality and humidity regulation. However, in the literature, very few studies have addressed hygrometric characteristics of shell huts in EBM from the far north region of Cameroon. The use EBM is hampered by the non-availability of databases related to their intrinsic properties and through unfamiliarity of their behavior over time. In the meantime, these shell huts in EBM are known for their moisture which regulates properties and thus contributes to the comfort of their occupants. This study aims to determine experimentally the adsorption/desorption isotherms at 30, 40 and 50 °C of the straw earth material carried out by the static gravimetric method for eight saturated salt solutions (LiCl, MgCl2, Mg(NO3)2, NaBr, IK, NaCl, KCl and K2SO4). The experimental curves obtained for absorption / desorption show that for a given water activity, the equilibrium water content Weq increases inversely with temperature (i.e. decreases with increasing temperature, and vice versa). In addition, the absorption curve does not overlap with the desorption curve. As a result, these shell huts in EBM display interesting humidity regulation characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-204

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Simonson CJ, Salonvaara M, Ojanen T. The effect of structures on indoor humidity - Possibility to improve comfort and perceived air quality. Indoor Air 2002;12:243–51. https://doi.org/10.1034/j.1600-0668.2002.01128.x.

DOI: 10.1034/j.1600-0668.2002.01128.x

Google Scholar

[2] Bahar R, Benazzoug M, Kenai S. Performance of compacted cement-stabilised soil. Cem Concr Compos 2004;26:811–20. https://doi.org/10.1016/j.cemconcomp.2004.01.003.

DOI: 10.1016/j.cemconcomp.2004.01.003

Google Scholar

[3] Morel JC, Mesbah A, Oggero M, Walker P. Building houses with local materials: Means to drastically reduce the environmental impact of construction. Build Environ 2001;36:1119–26. https://doi.org/10.1016/S0360-1323(00)00054-8.

DOI: 10.1016/s0360-1323(00)00054-8

Google Scholar

[4] Aymerich F, Fenu L, Meloni P. Effect of reinforcing wool fibres on fracture and energy absorption properties of an earthen material. Constr Build Mater 2012;27:66–72. https://doi.org/10.1016/j.conbuildmat.2011.08.008.

DOI: 10.1016/j.conbuildmat.2011.08.008

Google Scholar

[5] Danso H, Martinson B, Ali M, Mant C. Performance characteristics of enhanced soil blocks: A quantitative review. Build Res Inf 2015; 43: 253–62. https://doi.org/10.1080/09613218.2014. 933293.

DOI: 10.1080/09613218.2014.933293

Google Scholar

[6] Millogo Y, Morel JC, Aubert JE, Ghavami K. Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Constr Build Mater 2014;52:71–8. https://doi.org/10.1016/J.CONBUILDMAT.2013.10.094.

DOI: 10.1016/j.conbuildmat.2013.10.094

Google Scholar

[7] Laborel-Préneron A, Magniont C, Aubert JE. Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition. Energy Build 2018;178:265–78. https://doi.org/10.1016/j.enbuild.2018.08.021.

DOI: 10.1016/j.enbuild.2018.08.021

Google Scholar

[8] Hamard E, Cammas C, Lemercier B, Cazacliu B, Morel JC. Micromorphological description of vernacular cob process and comparison with rammed earth. Front Archit Res 2020;9:203–15. https://doi.org/10.1016/j.foar.2019.06.007.

DOI: 10.1016/j.foar.2019.06.007

Google Scholar

[9] Babé C, Kidmo DK, Tom A, Mvondo RRN, Boum RBE, Djongyang N. Thermomechanical characterization and durability of adobes reinforced with millet waste fibers (sorghum bicolor). Case Stud Constr Mater 2020;13:e00422. https://doi.org/10.1016/j.cscm.2020.e00422.

DOI: 10.1016/j.cscm.2020.e00422

Google Scholar

[10] Mazhoud B, Collet F, Prétot S, Lanos C. Effect of hemp content and clay stabilization on hygric and thermal properties of hemp-clay composites. Constr Build Mater 2021;300:123878. https://doi.org/10.1016/j.conbuildmat.2021.123878.

DOI: 10.1016/j.conbuildmat.2021.123878

Google Scholar

[11] Saidi M, Cherif AS, Zeghmati B, Sediki E. Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Constr Build Mater 2018;167:566–77. https://doi.org/10.1016/j.conbuildmat.2018.02.063.

DOI: 10.1016/j.conbuildmat.2018.02.063

Google Scholar

[12] Baroghel-Bouny V. Water vapour sorption experiments on hardened cementitious materials. Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure. Cem Concr Res 2007;37:414–37. https://doi.org/10.1016/j.cemconres.2006.11.019.

DOI: 10.1016/j.cemconres.2006.11.019

Google Scholar

[13] Zhang X, Zillig W, Künzel HM, Zhang X, Mitterer C. Evaluation of moisture sorption models and modi fi ed Mualem model for prediction of desorption isotherm for wood materials. Build Environ 2015;92:387–95. https://doi.org/10.1016/j.buildenv.2015.05.021.

DOI: 10.1016/j.buildenv.2015.05.021

Google Scholar

[14] Collet F, Chamoin J, Pretot S, Lanos C. Comparison of the hygric behaviour of three hemp concretes. Energy Build 2013;62:294–303. https://doi.org/10.1016/j.enbuild.2013.03.010.

DOI: 10.1016/j.enbuild.2013.03.010

Google Scholar

[15] Cagnon H, Aubert JE, Coutand M, Magniont C. Hygrothermal properties of earth bricks. Energy Build 2014;80:208–17. https://doi.org/10.1016/j.enbuild.2014.05.024.

DOI: 10.1016/j.enbuild.2014.05.024

Google Scholar

[16] Hamard E, Morel J, Salgado F, Marcom A, Meunier N. Original article A procedure to assess the suitability of plaster to protect vernacular earthen architecture. J Cult Herit 2013;14:109–15. https://doi.org/10.1016/j.culher.2012.04.005.

DOI: 10.1016/j.culher.2012.04.005

Google Scholar

[17] Shahabadi SZ, Harofteh MA, Shahabadi AZ. Technology in Society Relationship of economic and environmental factors with the acceptance of earthen architecture technology : A case study of young educated couples in. Technol Soc 2019;59:101152. https://doi.org/10.1016/j.techsoc.2019.101152.

DOI: 10.1016/j.techsoc.2019.101152

Google Scholar

[18] Sirinwaranon P, Atong D, Sricharoenchaikul V. Gasification of torrefied cassava rhizome with Ni/MCM-41 catalyst derived from illite waste. Energy Reports 2020;6:537–47. https://doi.org/10.1016/j.egyr.2020.09.031.

DOI: 10.1016/j.egyr.2020.09.031

Google Scholar

[19] Lagouin M, Magniont C, Sénéchal P, Moonen P, Aubert J. Influence of types of binder and plant aggregates on hygrothermal and mechanical properties of vegetal concretes 2019;222:852–71. https://doi.org/10.1016/j.conbuildmat.2019.06.004.

DOI: 10.1016/j.conbuildmat.2019.06.004

Google Scholar

[20] Riaz M, Chen B. Influence of type of binder and size of plant aggregate on the hygrothermal properties of bio-concrete. Constr Build Mater 2020;251:118981. https://doi.org/10.1016/j.conbuildmat.2020.118981.

DOI: 10.1016/j.conbuildmat.2020.118981

Google Scholar

[21] McGregor F, Heath A, Shea A, Lawrence M. The moisture buffering capacity of unfired clay masonry. Build Environ 2014;82:599–607. https://doi.org/10.1016/j.buildenv.2014.09.027.

DOI: 10.1016/j.buildenv.2014.09.027

Google Scholar

[22] Haba B, Agoudjil B, Boudenne A, Benzarti K. Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr Build Mater 2017;154:963–71. https://doi.org/10.1016/j.conbuildmat.2017.08.025.

DOI: 10.1016/j.conbuildmat.2017.08.025

Google Scholar

[23] Remki B, Abahri K, Belarbi R, Bensaibi M. Hydric and structural approaches for earth based materials characterization. Energy Procedia 2017;139:417–23. https://doi.org/10.1016/j.egypro. 2017.11.231.

DOI: 10.1016/j.egypro.2017.11.231

Google Scholar

[24] Liuzzi S, Rubino C, Stefanizzi P, Petrella A, Boghetich A, Casavola C, et al. Hygrothermal properties of clayey plasters with olive fibers. Constr Build Mater 2018;158:24–32. https://doi.org/10.1016/j.conbuildmat.2017.10.013.

DOI: 10.1016/j.conbuildmat.2017.11.117

Google Scholar

[25] Liuzzi S, Rubino C, Martellotta F. Properties of clay plasters with olive fibers. LTD; 2020. https://doi.org/10.1016/B978-0-12-819481-2.00009-X.

DOI: 10.1016/b978-0-12-819481-2.00009-x

Google Scholar

[26] Rahim M, Douzane O, Le ADT, Promis G, Langlet T. Characterization and comparison of hygric properties of rape straw concrete and hemp concrete 2016;102:679–87. https://doi.org/10.1016/j.conbuildmat.2015.11.021.

DOI: 10.1016/j.conbuildmat.2015.11.021

Google Scholar

[27] Fouchal F, Gouny F, Maillard P, Ulmet L, Rossignol S. Experimental evaluation of hydric performances of masonry walls made of earth bricks, geopolymer and wooden frame. Build Environ 2015;87:234–43. https://doi.org/10.1016/j.buildenv.2015.01.036.

DOI: 10.1016/j.buildenv.2015.01.036

Google Scholar

[28] Hall M, Allinson D. Analysis of the hygrothermal functional properties of stabilised rammed earth materials. Build Environ 2009;44:1935–42. https://doi.org/10.1016/j.buildenv.2009.01.007.

DOI: 10.1016/j.buildenv.2009.01.007

Google Scholar

[29] El Fgaier F, Lafhaj Z, Chapiseau C, Antczak E. Effect of sorption capacity on thermo-mechanical properties of unfired clay bricks. J Build Eng 2016;6:86–92. https://doi.org/10.1016/j.jobe.2016.02.011.

DOI: 10.1016/j.jobe.2016.02.011

Google Scholar

[30] Fabbri A, Mcgregor F, Costa I, Faria P. Effect of temperature on the sorption curves of earthen materials. Mater Struct 2017;50:1–13. https://doi.org/10.1617/s11527-017-1122-7.

DOI: 10.1617/s11527-017-1122-7

Google Scholar

[31] Champiré F, Fabbri A, Morel JC, Wong H, McGregor F. Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Constr Build Mater 2016;110:70–8. https://doi.org/10.1016/j.conbuildmat.2016.01.027.

DOI: 10.1016/j.conbuildmat.2016.01.027

Google Scholar

[32] Zhang X, Zillig W, Künzel HM, Zhang X, Mitterer C. Evaluation of moisture sorption models and modified Mualem model for prediction of desorption isotherm for wood materials. Build Environ 2015;92:387–95. https://doi.org/10.1016/j.buildenv.2015.05.021.

DOI: 10.1016/j.buildenv.2015.05.021

Google Scholar

[33] Muzaffar K, Kumar P. Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technol 2016;291:322–7. https://doi.org/10.1016/j.powtec.2015.12.046.

DOI: 10.1016/j.powtec.2015.12.046

Google Scholar

[34] Tchouanti B, Onguene P, Ali A, Mouangue R. Effect of particle size on syngas production using sawdust of Cameroonian Triplochiton scleroxylon 2019;6. https://doi.org/10.1016/j.sciaf.2019.e00182.

DOI: 10.1016/j.sciaf.2019.e00182

Google Scholar

[35] Césaire A, Noubissié E, Carly S, Desobgo Z, Ali A. Optimization of the enzymatic hydrolysis of cellulose of triplochiton scleroxylon sawdust in view of the production of bioethanol 2020;8. https://doi.org/10.1016/j.sciaf.2020.e00438.

DOI: 10.1016/j.sciaf.2020.e00438

Google Scholar

[36] Touré PM, Sambou V, Faye M, Thiam A, Adj M, Azilinon D. Mechanical and hygrothermal properties of compressed stabilized earth bricks (CSEB). J Build Eng 2017;13:266–71. https://doi.org/10.1016/J.JOBE.2017.08.012.

DOI: 10.1016/j.jobe.2017.08.012

Google Scholar