[1]
Paul Burke, Georges J. Kipouros Development of Magnesium Powder Metallurgy AZ31 AlloyUsing Commercially Available Powders. High Temp. Mater. Proc., Vol. 30 (2011), p.51–61.
DOI: 10.1515/htmp.2011.007
Google Scholar
[2]
Ajit Kumar, PulakM. Pandey Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy Journal of Magnesium and Alloys 8 (2020) 883–898.
DOI: 10.1016/j.jma.2020.02.011
Google Scholar
[3]
Heny Faisal, Darminto, Triwikantoro, Interfacial reactions and wetting in Al-Mg sintered by powder metallurgy process. Cite as: AIP Conference Proceedings 1725, 020017 (2016).
DOI: 10.1063/1.4945471
Google Scholar
[4]
Yongxian Huang, Tianhao Wang, Weiqiang Guo, Long Wan, Shixiong Lv Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by Direct Friction Stir Processing Materials and Design 59 (2014) 274–278.
DOI: 10.1016/j.matdes.2014.02.067
Google Scholar
[5]
m.u.f. khan, pati , j. christudasjustus Spark plasma sintering of a high-energy ball milled Mg-10 wt% Al alloy Journal of Magnesium and Alloys 8 (2020) 319–328.
DOI: 10.1016/j.jma.2020.02.006
Google Scholar
[6]
Matej Brezina, Jozef Mind Characterization of Powder Metallurgy Processed Pure Magnesium Materials for, Biomedical Applications Metals 2017, 7, 461;.
Google Scholar
[7]
Jozef Minda, Stanislava Fintová Electrochemical Corrosion Behavior of Pure Mg Processed by Powder Metallurgy https://doi.org/10.3390/coatings11080986.
DOI: 10.3390/coatings11080986
Google Scholar
[8]
Sravya Tekumalla, Lim Si Chun, Manoj Gupta Preprocessing of powder to enhance mechanical and thermal response of bulk magnesium https://doi.org/10.1016/j.mprp.2019.03.003.
DOI: 10.1016/j.mprp.2019.03.003
Google Scholar
[9]
J. w. s. jones & j. williams the preparation of beryllium magnesium alloys by powder metallurgical methods http://dx.doi.org/10.1179/pom.1961.4.8.003.
Google Scholar
[10]
G.H. Majzoobia, K. Rahmania, M. Kashfi The Effect of Pre-compaction on Properties of Mg/SiC Nanocomposites Compacted at High Strain Rates Journal of Stress Analysis Vol. 4, No. 2, Autumn Winter 2019-20.
Google Scholar
[11]
Bˇrezina, Jozef Minda Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications Metals 2017, 7, 461;.
DOI: 10.3390/met7110461
Google Scholar
[12]
Mária Zemková, Peter Minárik, Microstructure and Mechanical Strength of Attritor-Milled and Spark Plasma Sintered Mg-4Y-3Nd Alloy https://doi.org/10.3390/cryst10070574.
DOI: 10.3390/cryst10070574
Google Scholar
[13]
Pranjal Nautiyal, Benjamin Boesl and Arvind Agarwal Boron Nitride Nanotube Reinforced Magnesium Composite by Spark Plasma Sintering.
DOI: 10.1002/adem.202000702
Google Scholar
[14]
Pavel Myagkikh, Dmitry Merson, Corrosion properties of biodegradable AZ31 and ZK60 magnesium alloys: in situ study https://doi.org/10.3390/CMDWC2021-09959 (registering DOI).
DOI: 10.3390/cmdwc2021-09959
Google Scholar
[15]
Tao Wang, Yufeng Huang, Lun Yang, Yunzhu Ma, Lei Wu Preparation of 2024-Al/AZ31-Mg Laminated Composite by Powder Metallurgy Integrated Forming and Sintering http://link.springer.com/article/10.1007/s11837-020-04303-4.
DOI: 10.1007/s11837-020-04303-4
Google Scholar
[16]
Ali Ercetin A novel Mg-Sn-Zn-Al-Mn magnesium alloy with superior corrosion properties https://doi.org/10.1051/metal/2021064.
DOI: 10.1051/metal/2021064
Google Scholar
[17]
Feng-Xiang Qin1, Chuan Ji1, Zhen-Hua Dan Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering https://doi.org/10.1007/s40195-016-0451-9.
Google Scholar
[18]
M. Suárez, A. Fernández, J.L. Menéndez Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials.
Google Scholar
[19]
Paraskevas, Dimos; Dadbakhsh, Sasan; Vleugels, Jef; Vanmeensel, Kim; Dewulf, Wim; Duflou, Solid state recycling of pure Mg and AZ31 Mg machining chips via spark plasma sintering Materials & Design; 2016; Vol. 109; p.520 – 529.
DOI: 10.1016/j.matdes.2016.07.082
Google Scholar
[20]
Zhongxue Feng, Yuhua Zhang, Jun Tan, Yuming Chen, Yiming Chen, Jianbo Li, Xianhua Chen, Kaihong Zheng, and Fusheng Pan Large strain hardening of magnesium containing in situ nanoparticles https://doi.org/10.1515/ntrev-2021-0074.
DOI: 10.1515/ntrev-2021-0074
Google Scholar
[21]
Hongbing Ji, Yixin Chen and Shengzhou Chen Fabrication of Nb-Based Alloy via Spark Plasma Sintering https://doi.org/10.4028/www.scientific.net/amr.557-559.38.
Google Scholar
[22]
D. Dvorsky, J. Kubásek Mechanical, corrosion and biological properties of advanced biodegradable Mg–MgF2 and WE43-MgF2 composite materials prepared by spark plasma sintering.
DOI: 10.1016/j.jallcom.2020.154016
Google Scholar
[23]
Ege Anıl diler Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering https://doi.org/10.7240/jeps.862794.
DOI: 10.7240/jeps.862794
Google Scholar
[24]
Ilona Hoffmann magnesium-titanium alloys for biomedical applications https://uknowledge.uky.edu/cme_etds/36.
Google Scholar
[25]
Peter Minárik , Mária Zemková Effect of Short Attritor-Milling of Magnesium Alloy Powder Prior to Spark Plasma Sintering Materials 2020, 13(18), 3973.
DOI: 10.3390/ma13183973
Google Scholar
[26]
G.H. Majzoobia, K. Rahmania, M. Kashfi The Effect of Pre-compaction on Properties of Mg/SiCNanocomposites Compacted at High Strain Rates Journal of Stress Analysis Vol. 4, No. 2, Autumn - Winter 2019-20.
Google Scholar