Crystallization by Acid Hydrolysis-Sulfonation of Cellulose Nanofibers from Eichhornia crassipes

Article Preview

Abstract:

This study reports the synthesis of cellulose nanocrystals (CNC) sulfonation from the isolated cellulose nanofibers (CNF) of the Eichhornia crassipes stems. The crystallization of fibers was done by varying the time of sulfonation, 30 min (CNC30) and 60 min (CNC60), in 6M sulfuric acid. Scanning electron microscope images (SEM), and energy dispersive X-ray spectroscopy (EDS) revealed that the crystals have a grain flakey-like structure with the detected presence of oxygen, carbon, and sulfur (due to the sulfonation) atoms. Using Fourier transform infrared spectroscopy (FTIR), unique functional groups of CNCs were detected. Further, the X-ray diffraction (XRD) scans revealed that CNCs have a cellulose-Ib monoclinic unit cell structure with Miller indices (200) and (400). Additionally, results showed that CNC30 has 74.45% and CNC60 has 76.13% crystal index percent and a crystal thickness of 0.048 nm for CNC30 and 0.047 nm for CNC60. Lastly, d-spacing of CNC30 and CNC60 exhibited values of 3.26 Å and 3.20 Å, respectively. These results warrant further studies on future applications of the produced CNC from Eichhornia crassipes fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-121

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hsu, W. Zhong, Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review, Membranes, 9 (2019) 74.

DOI: 10.3390/membranes9060074

Google Scholar

[2] Y. Habibi, L. Lucia, O. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chem.Rev. 110 (2010) 3479-3500.

DOI: 10.1021/cr900339w

Google Scholar

[3] B. Thomas, M. Raj, B. Athira, H. Rubiyah, J. Jithin, A. Moores, G. Drisko, C. Sanchez, Nanocellulose, a Versatile Green Platform: from Biosources to Materials and their applications, Chem. Rev. 118 (2018) 11575-11625.

DOI: 10.1021/acs.chemrev.7b00627

Google Scholar

[4] W. Chen, H. Yu, S.Y. Lee, T. Wei, J. Li, Z. Fan, Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage, Chem Soc Rev 47 (2018) 2837.

DOI: 10.1039/c7cs00790f

Google Scholar

[5] R. Rinaldi, F. Schuth, Design solid catalysts for the version of biomass., Energy Environ Sci 2(6) (2009) 610.

Google Scholar

[6] M. Asrofi, H. Abral, A. Kasim, A. Pratoto, M. Mahardika, J.W. Park, H.J. Kim, XRD and FTIR Studies of Nanocrystalline Cellulose from Water Hyacinth (Eichhornia crassipes) Fiber, Journal of Metastable and Nanocrystalline Materials, Vol. 29 (2017) 9-16.

DOI: 10.4028/www.scientific.net/jmnm.29.9

Google Scholar

[7] D. Klemm, B. Heublein, H.P. Fink, A.Bohn, Agnew. Chem. Int. Ed., 44 (2005), 3358-3393.

DOI: 10.1002/anie.200460587

Google Scholar

[8] M. Balat, G. Ayar,Energy Sources, 27 (2005), 931-940.

Google Scholar

[9] R. Ruiz-Palmero, M.L. Soriano, M. Valcárel, Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products, Journal of Chromatography A, CHROMA-356581 (2015) 7.

DOI: 10.1016/j.chroma.2015.06.023

Google Scholar

[10] A.F. Abdel-Fattah, M.A. Abdel-Naby, Pretreatment and enzymic saccharification of water hyacinth cellulose; Carbohydr. Polym., 58 (2014) 125-129.

DOI: 10.1016/j.carbpol.2011.10.033

Google Scholar

[11] M.T. Sundari, A. Ramesh, Isolation and characterization of cellulose from the aquatic weed water hyacinth-Eicchornia crassipes, Carbohydrate Polymer, 87 (2012) 1701-1705.

DOI: 10.1016/j.carbpol.2011.09.076

Google Scholar

[12] J.X. Sun, X.F. Sun, H. Zhao, R.C. Sun, Isolation and characterization of cellulose from sugarcane bagasse, Polymer Degradation and Stability, 84 (2004) 331-339.

DOI: 10.1016/j.polymdegradstab.2004.02.008

Google Scholar

[13] E. De Morais Texeira, T.J. Bondancia, K.B. Teodoro, A.N. Corrêa, J.M. Marconcini, L.H. Mattoso, Sugarcane bagasse whiskers: Extraction and Characterization, Industrial Crops and Products, 33 (2011) 63-66.

DOI: 10.1016/j.indcrop.2010.08.009

Google Scholar

[14] L.D. Whittig, W.R. Allardice, X-Ray Diffraction Techniques, University of California, (1986).

Google Scholar

[15] S. Tanpichai, S.K. Biswas, S. Witayakran, H. Yano, Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers, ACS Sustainable Chemistry Engineering, (2019).

DOI: 10.1021/acssuschemeng.9b04095

Google Scholar