[1]
Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019).
Google Scholar
[2]
Marzari, N. et al. Large-Area Epitaxial Monolayer MoS2. ACS Nano 9, 4611–4620 (2015).
Google Scholar
[3]
Wang, S. et al. Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chem. Mater. 26, 6371–6379 (2014).
DOI: 10.1021/cm5025662
Google Scholar
[4]
Jiang, J. et al. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 16, 894901 (2021).
Google Scholar
[5]
Hong, S. et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 12, 1–11 (2021).
DOI: 10.1038/s41467-021-23711-x
Google Scholar
[6]
Wadhwa, R. et al. Investigation of charge transport and band alignment of MoS2-ReS2 heterointerface for high performance and self-driven broadband photodetection. Appl. Surf. Sci. 569, 150949 (2021).
DOI: 10.1016/j.apsusc.2021.150949
Google Scholar
[7]
Park, M. et al. MoS2-Based Tactile Sensor for Electronic Skin Applications. Adv. Mater. 28, 2556–2562 (2016).
Google Scholar
[8]
Daus, A. et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021).
DOI: 10.1038/s41928-021-00598-6
Google Scholar
[9]
Song, S. et al. Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length. Nat. Commun. 13, 4916 (2022).
DOI: 10.1038/s41467-022-32582-9
Google Scholar
[10]
Liu, C., Wang, L., Qi, J. & Liu, K. Designed Growth of Large-Size 2D Single Crystals. Adv. Mater. 32, 1–10 (2020).
DOI: 10.1002/adma.202000046
Google Scholar
[11]
Zhu, L. et al. Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Res. 13, 3098–3104 (2020).
DOI: 10.1007/s12274-020-2979-2
Google Scholar
[12]
Ling, X. et al. Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Lett. 14, 464–472 (2014).
Google Scholar
[13]
Shi, J. et al. Substrate facet effect on the growth of monolayer MoS2 on Au foils. ACS Nano 9, 4017–4025 (2015).
Google Scholar
[14]
Zhao, Y. et al. Doping, Contact and Interface Engineering of Two-Dimensional Layered Transition Metal Dichalcogenides Transistors. Adv. Funct. Mater. 27, 1603484 (2017).
DOI: 10.1002/adfm.201603484
Google Scholar
[15]
Wang, W. et al. Effect of Mo concentration on shape and size of monolayer MoS2 crystals by chemical vapor deposition. J. Phys. D. Appl. Phys. 50, 395501 (2017).
DOI: 10.1088/1361-6463/aa81ae
Google Scholar
[16]
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).
Google Scholar
[17]
Zhou, X. et al. Interlayer interaction on twisted interface in incommensurate stacking MoS2: A Raman spectroscopy study. J. Colloid Interface Sci. 538, 159–164 (2019).
DOI: 10.1016/j.jcis.2018.11.032
Google Scholar
[18]
Liu, X. et al. Suspended MoS2 Photodetector Using Patterned Sapphire Substrate. Small 17, 2100246 (1–8) (2021).
Google Scholar
[19]
Xie, J. et al. Analysis of Schottky barrier heights and reduced Fermi-level pinning in monolayer CVD-grown MoS2 field-effect-transistors. Nanotechnology 33, 225702 (2022).
DOI: 10.1088/1361-6528/ac55d2
Google Scholar
[20]
Kranthi Kumar, V., Dhar, S., Choudhury, T. H., Shivashankar, S. A. & Raghavan, S. A predictive approach to CVD of crystalline layers of TMDs: The case of MoS2. Nanoscale 7, 7802–7810 (2015).
DOI: 10.1039/c4nr07080a
Google Scholar
[21]
Kumar, N. et al. Growth of Highly Crystalline and Large Scale Monolayer MoS2 by CVD: The Role of substrate Position. Cryst. Res. Technol. 53, 1800002 (2018).
DOI: 10.1002/crat.201800002
Google Scholar
[22]
Dieterle, M. & Mestl, G. Raman spectroscopy of molybdenum oxides: Part II. Resonance Raman spectroscopic characterization of the molybdenum oxides Mo4O11 and MoO2. Phys. Chem. Chem. Phys. 4, 822–826 (2002).
DOI: 10.1039/b107046k
Google Scholar
[23]
Xu, H. et al. High-Performance Wafer-Scale MoS2 Transistors toward Practical Application. Small 14, 1803465 (2018).
Google Scholar