Microstructure and Formation Mechanisms of Nanowires and Nanoplates ZrO2 during the ZrB2 Deposition Process

Article Preview

Abstract:

Preparation of boride by chemical vapor deposition (CVD) is sensitive to oxygen, subtle changes in oxygen concentration during the deposition of ZrB2 can induce the formation of Zirconium dioxide (ZrO2) with a novel nanoplate-stacked structure and nanowire structure. The ZrO2 nanostructure changed with - oxygen concentration. Nanowires with uniform size of 50-100 nm in diameter and over 100 μm in length were obtained at high oxygen concentration, while highly-ordered nanoplate arrays were obtained at low oxygen concentration. Both of these nanostructures were grown in situ on the surface of ZrB2-coating. In this paper, the preparation method of novelty ZrO2 nano-structures grown in situ was provided, the morphologies and compositions of the nano-structural ZrO2 were characterized and the formation mechanism was proposed, which also provides experimental basis for the industrial morphology control of ZrB2 deposited by CVD method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-74

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Oda, T. Yoshio. Preparation of Zr-B films by r.f. sputtering, J. Mater Sci Lett. 9 (1990) 1080-1082.

DOI: 10.1007/bf00727882

Google Scholar

[2] Zhang X, Hu P, Han J, et al. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions, J. Compos Sci Technol. 68 (2008) 1718-1726.

DOI: 10.1016/j.compscitech.2008.02.009

Google Scholar

[3] Guo WM, Zhang GJ. Oxidation resistance and strength retention of ZrB2-SiC ceramics, J. Eur Ceram Soc. 30 (2010) 2387-2395.

DOI: 10.1016/j.jeurceramsoc.2010.01.028

Google Scholar

[4] Chen S, Zhang C, Zhang Y, et al. Mechanism of ablation of 3D C/ZrC-SiC composite under an oxyacetylene flame, J. Corros Sci. 68 (2013) 168-175.

DOI: 10.1016/j.corsci.2012.11.009

Google Scholar

[5] Philipp KK, Alina S,Yuriy K, et al. Structure, corrosion resistance, mechanical and tribological properties of ZrB2 and Zr-B-N coatings, J. Metals. 11 (2021) 1194-1208.

DOI: 10.3390/met11081194

Google Scholar

[6] Li DJ, Yang J, Zhang XH, et al. Nanoscale ZrC/ZrB2 multilayered coatings prepared by magnetron sputtering, J. Vac Sci Technol B. 25 (2007) 11-13.

DOI: 10.1116/1.2464116

Google Scholar

[7] Ma H, Miao Q, Liang W, Liu Y, Xue L. High temperature oxidation resistance of Y2O3 modified ZrB2-SiC coating for carbon/carbon composites. Ceram Int, 47 (2020) 6728-6735.

DOI: 10.1016/j.ceramint.2020.11.015

Google Scholar

[8] Bartulia C, Valentea T, Tuluib M. Plasma spray deposition and high temperature characterization of ZrB2-SiC protective coatings, J. Surf Coat Technol. 155 (2002) 260-273.

DOI: 10.1016/s0257-8972(02)00058-0

Google Scholar

[9] Zhou L, Fu Q, Hu D, Zhang J, Tong M. A dense ZrB2-SiC-Si/SiC-Si coating to protect carbon/carbon composites against oxidation at 1773 k and 1973 k, J. Corros Sci, 183 (2021) 109331.

DOI: 10.1016/j.corsci.2021.109331

Google Scholar

[10] Berthon S, Pichelin G, Male G. Thermodynamics of the system Zr-B-H-Cl. A contribution at low temperature, J. Calphad. 19 (1995) 155-167.

DOI: 10.1016/0364-5916(95)00017-9

Google Scholar

[11] Deng J, Cheng L, Hong Z, et al. Thermodynamics of the production of condensed phases in the chemical vapor deposition process of zirconium diboride with ZrCl4-BCl3-H2 precursors, J. Thin Solid Films. 520 (2012) 2331-2335.

DOI: 10.1016/j.tsf.2011.10.004

Google Scholar

[12] Peshev P. A thermodynamic estimation of the chemical vapor deposition of some borides, J. J Solid State Chem. 154 (2000) 157-161.

DOI: 10.1006/jssc.2000.8828

Google Scholar

[13] Zhu Y, Cheng LF, Ma BS, et al. Calculation and synthesis of ZrC by CVD from ZrCl4–C3H6–H2–Ar system with high H2 percentage, J. Appl Surf Sci., 332 (2015) 591-598.

DOI: 10.1016/j.apsusc.2015.01.175

Google Scholar

[14] Liu G, Wu S, Shahsavari D, et al. Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation, J. Eur J Mech A-Solid, 95 (2022) 104649.

DOI: 10.1016/j.euromechsol.2022.104649

Google Scholar

[15] Bendaida M, Bousahla A A, Mouffoki A, et al. Dynamic properties of nonlocal temperature-dependent FG nanobeams under various thermal environments, J. Transp Porous Media, 142 (2022) 187-208.

DOI: 10.1007/s11242-021-01666-3

Google Scholar

[16] Rouabhia A, Chikh A, Bousahla A A, et al. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory, J. Steel Compos Struct, 37 (2020) 695-709.

Google Scholar

[17] Cuong-Le T, Nguyen K D, Le-Minh H, et al. Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory, J. Adv Nano Res, 12 (2022) 441-455.

Google Scholar

[18] Van Vinh P, Tounsi A. Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters, J. Thin Wall Struct, 174 (2022) 109084.

DOI: 10.1016/j.tws.2022.109084

Google Scholar

[19] Bouafia H, Chikh A, Bousahla A A, et al. Natural frequencies of FGM nanoplates embedded in an elastic medium, J. Adv Nano Res, 11 (2021) 239-249.

Google Scholar

[20] Kumar Y, Gupta A, Tounsi A. Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model, J. Adv Nano Res. 11 (2021) 1-17.

Google Scholar

[21] Van Vinh P, Tounsi A. The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates, J. Eng Comput-Germany, (2021) 1-19.

DOI: 10.1007/s00366-021-01475-8

Google Scholar

[22] Umegaki T, Hosoya T, Toyama N, et al. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane, J. J Alloy Compd, 608 (2014) 261-265.

DOI: 10.1016/j.jallcom.2014.04.110

Google Scholar

[23] Baek MK, Park SJ, Choi DJ. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition, J. J Cryst Growth, 459 (2017) 198-202.

DOI: 10.1016/j.jcrysgro.2016.12.033

Google Scholar

[24] Espinoza-González R A, Diaz-Droguett D E, Avila J I, et al. Hydrothermal growth of zirconia nanobars on zirconium oxide, J. Mater Lett, 65 (2011) 2121-2123.

DOI: 10.1016/j.matlet.2011.04.056

Google Scholar

[25] Duan G, Li A, Yang X, et al. Soft-template synthesis of ZrOC2O4 nanocapsule with mesoporous core and microporous shell structure, J. Micropor Mesopor Mat, 116 (2008) 86-90.

DOI: 10.1016/j.micromeso.2008.03.024

Google Scholar

[26] Zhang RQ, Lifshitz Y, Lee ST. Oxide-assisted growth of semiconducting nanowires, J. Adv Mater. 15 (2003) 635-640.

DOI: 10.1002/adma.200301641

Google Scholar

[27] Lee SH, Sakka Y, Kagawa Y. Corrosion of ZrB2 powder during wet processing–analysis and control, J. Am Ceram Soc. 91 (2008) 1715-1717.

DOI: 10.1111/j.1551-2916.2008.02343.x

Google Scholar

[28] Yu XG, Gong Y, Bi WY, et al. XPS studies on ZrO2 thin films deposited on glass substrate by sol-gel, J. Key Eng Mater. 368 (2008) 1277-1279.

DOI: 10.4028/www.scientific.net/kem.368-372.1277

Google Scholar

[29] Lee ST, Wang N, Lee CS. Semiconductor nanowires: synthesis, structure and properties, J. Mat Sci Eng A-Struct. 286 (2000) 16-23.

Google Scholar

[30] Kumar L, Sarma D D, Krummacher S. XPS study of the room temperature surface oxidation of zirconium and its binary alloys with tin, chromium, and iron, J. Appl Surf Sci, 32 (1988) 309-319.

DOI: 10.1016/0169-4332(88)90016-5

Google Scholar

[31] Zhang X, Luo H, Zhong W. Growth units model of anion coordination-polyhedra and its application to crystal growth, J. Sci China Ser E, 47(2004) 191-202.

DOI: 10.1360/03ye0221

Google Scholar