[1]
L. Ghasemi-Mobarakeh, S. Cano, V. Momeni, D. Liu, I. Duretek, G. Riess, C. Kukla, C. Holzer, Effect of Increased Powder–Binder Adhesion by Backbone Grafting on the Properties of Feedstocks for Ceramic Injection Molding, Polymers (Basel). 14 (2022).
DOI: 10.3390/polym14173653
Google Scholar
[2]
V. Momeni, M. Hossein Alaei, A. Askari, A. Hossein Rahimi, K. Nekouee, Effect of carnauba wax as a part of feedstock on the mechanical behavior of a part made of 4605 low alloy steel powder using metal injection molding, Materwiss. Werksttech. 50 (2019) 432–441.
DOI: 10.1002/mawe.201800090
Google Scholar
[3]
V. Momeni, M.H. Alaei, Optimization of Injection Parameters in Metal Injection Molding of 4605 Low Alloy Steel, Modares Mech. Eng. 19 (2019) 1199–1208.
Google Scholar
[4]
A.K. Pandey, A.P. Chaudhari, P. Vemula, B. Sunil, K.C. Nayak, P.P. Date, Effect of powder loading and testing condition on the different properties of metal injection molding parts, Mater. Today Proc. (2020).
DOI: 10.1016/j.matpr.2020.03.309
Google Scholar
[5]
K. Yu, S. Ye, W. Mo, Y. Lv, H. Jiang, R. Ma, C.T. Kwok, P. Yu, Oxygen content control in metal injection molding of 316L austenitic stainless steel using water atomized powder, J. Manuf. Process. 50 (2020) 498–509.
DOI: 10.1016/j.jmapro.2019.12.038
Google Scholar
[6]
Y. Liu, Y. Pan, X. Lu, J. Sun, T. Hui, Y. Yang, A. Yu, X. Qu, J. Zhang, Fabrication of TiAl alloys turbocharger turbine wheel for engines by metal injection molding, Powder Technol. 384 (2021) 132–140.
DOI: 10.1016/j.powtec.2021.01.070
Google Scholar
[7]
V. Momeni, A. Askari, M.H. Alaei, A.H. Rahimi, K. Nekouee, H. Zangi, The Effect of Powder Loading and Binder System on the Mechanical, Rheological and Microstructural Properties of 4605 Powder in MIM Process, Trans. Indian Inst. Met. 72 (2019) 1245–1254.
DOI: 10.1007/s12666-019-01615-1
Google Scholar
[8]
B. Huang, S. Liang, X. Qu, The rheology of metal injection molding, 137 (2003) 132–137.
Google Scholar
[9]
L. Shu-quan, T. Yan, H. Bai-yun, Rheology in metal powder injection molding, 2 (2007) 372–377.
Google Scholar
[10]
Y. Li, L. Li, K.A. Khalil, Effect of powder loading on metal injection molding stainless steels, J. Mater. Process. Technol. 183 (2007) 432–439.
DOI: 10.1016/j.jmatprotec.2006.10.039
Google Scholar
[11]
M. Ra, F. Ahmad, N. Muhamad, A. Bakar, M.A. Omar, M. Niaz, M. Aslam, Effects of solid loading and cooling rate on the mechanical properties and corrosion behavior of powder injection molded 316 L stainless steel, 289 (2016) 135–142.
DOI: 10.1016/j.powtec.2015.11.063
Google Scholar
[12]
V. Momeni, M.H. Alaei, A. Askari, A.H. Rahimi, K. Nekouee, Effect of the Fraction of Steel 4605 Powder in the Load in Injection Molding with the Use of a Polymer-Based Binder, Met. Sci. Heat Treat. 61 (2020) 777–781.
DOI: 10.1007/s11041-020-00499-z
Google Scholar
[13]
M.E. Sotomayor, A. Várez, B. Levenfeld, Influence of powder particle size distribution on rheological properties of 316 L powder injection moulding feedstocks, Powder Technol. 200 (2010) 30–36.
DOI: 10.1016/j.powtec.2010.02.003
Google Scholar
[14]
M.E. Sotomayor, B. Levenfeld, A. Várez, Powder injection moulding of premixed ferritic and austenitic stainless steel powders, Mater. Sci. Eng. A. 528 (2011) 3480–3488.
DOI: 10.1016/j.msea.2011.01.038
Google Scholar
[15]
L. Liu, N.H. Loh, B.Y. Tay, S.B. Tor, Y. Murakoshi, R. Maeda, Mixing and characterisation of 316L stainless steel feedstock for micro powder injection molding, Mater. Charact. 54 (2005) 230–238.
DOI: 10.1016/j.matchar.2004.11.014
Google Scholar
[16]
X. Kong, T. Barriere, J.C. Gelin, Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding, J. Mater. Process. Tech. 212 (2012) 2173–2182.
DOI: 10.1016/j.jmatprotec.2012.05.023
Google Scholar
[17]
G. Yang, J. Li, W. Song, J. Meng, Mixing behavior and flowing property in micro-powder injection molding of carbonyl steel feedstock, Adv. Mater. Res. 753–755 (2013) 167–170.
DOI: 10.4028/www.scientific.net/amr.753-755.167
Google Scholar
[18]
J. FAN, Y. HAN, T. LIU, H. CHENG, Y. GAO, J. TIAN, Influence of surfactant addition on rheological behaviors of injection-molded ultrafine 98W-1Ni-1Fe suspension, Trans. Nonferrous Met. Soc. China. 23 (2013) 1709–1717.
DOI: 10.1016/s1003-6326(13)62652-7
Google Scholar
[19]
M.R. Harun, N. Muhamad, A.B. Sulong, N.H. Mohamad Nor, M.H.I. Ibrahim, Rheological Investigation of ZK60 Magnesium Alloy Feedstock for Metal Injection Moulding Using Palm Stearin Based Binder System, in: Front. Manuf. Des. Sci., Trans Tech Publications Ltd, 2011: p.4126–4130.
DOI: 10.4028/www.scientific.net/amm.44-47.4126
Google Scholar
[20]
N.H.M. Nor, N. Muhamad, M.H.I. Ibrahim, M. Ruzi, K.R. Jamaludin, OPTIMIZATION OF INJECTION MOLDING PARAMETER OF Ti-6Al-4V POWDER MIX WITH PALM STEARIN AND POLYETHYLENE FOR THE HIGHEST GREEN STRENGTH BY USING TAGUCHI METHOD, Int. J. Mech. Mater. Eng. 6 (2011) 126–132.
DOI: 10.1063/1.3552528
Google Scholar
[21]
S. Amin, N. Muhamad, K. Jamaludin, A. Fayyaz, H. Yunn, Characterization of the Feedstock Properties of Metal Injection-molded WC-Co with Palm Stearin Binder System, Sains Malaysiana. 43 (2014) 123–128.
Google Scholar
[22]
R. Sauti, N. Wahab, M.A. Omar, I.N. Ahmad, Effects of Binders System on Sintered Properties of Metal Injection Molding Parts of M2 High Speed Steel, in: Adv. Mater. Nanotechnol. III, Trans Tech Publications, 2014: p.201–204.
DOI: 10.4028/www.scientific.net/amr.1024.201
Google Scholar
[23]
R. Ibrahim, M. Azmirruddin, M. Jabir, N. binti Johari, M. Muhamad, A.R.A. Talib, Injection Molding of Inconel718 Parts for Aerospace Application Using Novel Binder System Based On Palm Oil Derivatives, World Acad. Sci. Eng. Technol. Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng. 6 (2012) 2112–2116.
DOI: 10.4028/www.scientific.net/ast.76.247
Google Scholar
[24]
mohd afian Omar, I. Subuki, N. Abdullah, M. Ismail, The Influence Of Palm Stearin Content On The Rheological Behaviour Of 316L Stainless Steel Mim Compact, J. Sci. Technol. 2 (2011).
Google Scholar
[25]
N. Nor, N. Muhamad, K. Jamaludin, S. Ahmad, Characterisation of Titanium Alloy Feedstock for Metal Injection Moulding Using Palm Stearin Binder System, Adv. Mater. Res. 264–265 (2011).
DOI: 10.4028/www.scientific.net/amr.264-265.586
Google Scholar
[26]
N.H.M. Nor, N. Muhamad, A.K.A.M. Ihsan, K.R. Jamaludin, Sintering Parameter Optimization of Ti-6Al-4V Metal Injection Molding for Highest Strength Using Palm Stearin Binder, Procedia Eng. 68 (2013) 359–364.
DOI: 10.1016/j.proeng.2013.12.192
Google Scholar
[27]
T. Osada, K. Nishiyabu, S. Matsuzaki, S. Tanaka, H. Miura, Effects of Metal Powder Characteristics on the Compactibility and Sinterability in Micro Metal Injection Molding Process, Trans. Japan Soc. Mech. Eng. Ser. A. 72 (2006) 148–153.
DOI: 10.1299/kikaia.72.148
Google Scholar
[28]
A.J. Coleman, K. Murray, M. Kearns, T.A. Tingskog, Effect of Particle Size Distribution on Processing and Properties of Metal Injection Moulded 4140 and 4340, in: Adv. Powder Metall. Part. Mater., Metal Powder Industries Federation, (2011).
Google Scholar
[29]
M.A. Ben Trad, V. Demers, L. Dufresne, Effect of Powder Shape and Size on Rheological, Thermal, and Segregation Properties of Low-Pressure Powder Injection Molding Feedstocks, J. Mater. Eng. Perform. 28 (2019) 5551–5562.
DOI: 10.1007/s11665-019-04276-9
Google Scholar
[30]
V. Momeni, H. Zangi, M. hossein Alaei, Effect of thermal debinding and sintering parameters on the mechanical properties of 4605 MIM compact using the RSM, Adv. Mater. Process. Technol. 0 (2021) 1–16.
DOI: 10.1080/2374068x.2021.1945807
Google Scholar
[31]
Y. min LI, X. quan LIU, F. hua LUO, J. ling YUE, Effects of surfactant on properties of MIM feedstock, Trans. Nonferrous Met. Soc. China (English Ed. 17 (2007) 1–8.
DOI: 10.1016/s1003-6326(07)60039-9
Google Scholar
[32]
T.G. Kang, S. Ahn, S.H. Chung, S.T. Chung, Y.S. Kwon, S.J. Park, R.M. German, Handbook of Metal Injection Molding, (2012).
DOI: 10.1016/b978-0-08-102152-1.00013-1
Google Scholar
[33]
J. Fan, Y. Han, T. Liu, H. Cheng, Y. Gao, J. Tian, Influence of surfactant addition on rheological behaviors of injection-molded ultrafine 98W−1Ni−1Fe suspension, Trans. Nonferrous Met. Soc. China. 23 (2013) 1709–1717.
DOI: 10.1016/s1003-6326(13)62652-7
Google Scholar
[34]
L. Liu, N.H. Loh, B.Y. Tay, S.B. Tor, Y. Murakoshi, R. Maeda, Mixing and characterisation of 316L stainless steel feedstock for micro powder injection molding, Mater. Charact. 54 (2005) 230–238.
DOI: 10.1016/j.matchar.2004.11.014
Google Scholar
[35]
N. V Pogodina, C. Cerclé, L. Avérous, R. Thomann, M. Bouquey, R. Muller, Processing and characterization of biodegradable polymer nanocomposites : detection of dispersion state, in: Annu. Eur. Rheol. Conf., 2008: p.543–553.
DOI: 10.1007/s00397-007-0243-2
Google Scholar
[36]
J. Hidalgo, A. Jiménez-Morales, J.M. Torralba, Torque rheology of zircon feedstocks for powder injection moulding, J. Eur. Ceram. Soc. 32 (2012) 4063–4072.
DOI: 10.1016/j.jeurceramsoc.2012.06.023
Google Scholar
[37]
S. Supriadi, B. Suharno, R. Hidayatullah, G. Maulana, E.R. Baek, Thermal Debinding Process of SS 17-4 PH in Metal Injection Molding Process with Variation of Heating Rates, Temperatures, and Holding Times, in: Mater. Manuf. Technol. VIII, Trans Tech Publications Ltd, 2017: p.238–244.
DOI: 10.4028/www.scientific.net/ssp.266.238
Google Scholar
[38]
A.M. Amin, M.H.I. Ibrahim, R. Asmawi, N. Mustaffa, M.Y. Hashim, Thermal Debinding and Sintering of water atomised {SS}316L Metal Injection Moulding Process, 226 (2017) 12155.
DOI: 10.1088/1757-899x/226/1/012155
Google Scholar
[39]
G. Matula, B. Tomiczek, M. Król, A. Szatkowska, M.E. Sotomayor, Application of thermal analysis in the selection of polymer components used as a binder for metal injection moulding of Co--Cr--Mo alloy powder, J. Therm. Anal. Calorim. 134 (2018) 391–399.
DOI: 10.1007/s10973-018-7543-x
Google Scholar
[40]
D. Lin, D. Sanetrnik, H. Cho, S.T. Chung, Y.S. Kwon, K.H. Kate, B. Hausnerova, S. V. Atre, S.J. Park, Rheological and thermal debinding properties of blended elemental Ti-6Al-4V powder injection molding feedstock, Powder Technol. 311 (2017) 357–363.
DOI: 10.1016/j.powtec.2016.12.071
Google Scholar
[41]
T. Siva Prasad, C. Yuvaraj, K.P. Rao, Analysis and Optimization of Metal Injection Molding Feedstock SS 316L for Rheological Properties, J. Inst. Eng. Ser. D. 99 (2018) 177–184.
DOI: 10.1007/s40033-018-0166-3
Google Scholar
[42]
A. Askari, V. Momeni, Rheological investigation and injection optimization of Fe–2Ni–2Cu feedstock for metal injection molding process, Mater. Chem. Phys. 271 (2021) 124926.
DOI: 10.1016/j.matchemphys.2021.124926
Google Scholar
[43]
B. Huang, S. Liang, X. Qu, The rheology of metal injection molding, J. Mater. Process. Technol. 137 (2003) 132–137.
Google Scholar
[44]
V. Momeni, H. Zangi, M.H. Allaei, Effect of polypropylene as the backbone of MIM feedstock on the micro-structural phase constituents, mechanical and rheological properties of 4605 low alloy steel compacts, Powder Metall. 63 (2020) 27–34.
DOI: 10.1080/00325899.2019.1701812
Google Scholar
[45]
V. Momeni, A. Askari, M.H. Allaei, H. Zangi, Investigating the Effect of Stearic Acid on the Mechanical, Rheological, and Microstructural Properties of AISI 4605 Feedstock for Metal Injection Molding Process, Trans. Indian Inst. Met. (2021).
DOI: 10.1007/s12666-021-02282-x
Google Scholar