Metal Injection Molding of Low Alloy Steel by Using a Palm Stearin/HDPE Binder System

Article Preview

Abstract:

Metal injection molding (MIM) is a proven technology for fabricating complex geometry and low-cost components. The binder system formulation and powder loading are the key parameters affecting the final properties of the manufactured parts in this process. This study investigates the influence of palm stearin (PS) content in a PS/High-Density Polyethylene (HDPE) binder system for three powder loadings of 60, 65, and 70 Vol.%. The manufactured feedstocks are characterized using scanning electron micrograph (SEM), thermo gravimetric analysis (TGA), and differential scanning calorimeter (DSC), rheological and mechanical tests. The results show that PS enhances mechanical properties at increased powder loading. In addition, residual carbon following changing the PS percentages has a significant role in determining the final characteristics of parts. Findings demonstrated that PS could drastically alter the rheological behavior, a crucial criterion for optimizing the feedstock formulation in the MIM process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-29

Citation:

Online since:

December 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Ghasemi-Mobarakeh, S. Cano, V. Momeni, D. Liu, I. Duretek, G. Riess, C. Kukla, C. Holzer, Effect of Increased Powder–Binder Adhesion by Backbone Grafting on the Properties of Feedstocks for Ceramic Injection Molding, Polymers (Basel). 14 (2022).

DOI: 10.3390/polym14173653

Google Scholar

[2] V. Momeni, M. Hossein Alaei, A. Askari, A. Hossein Rahimi, K. Nekouee, Effect of carnauba wax as a part of feedstock on the mechanical behavior of a part made of 4605 low alloy steel powder using metal injection molding, Materwiss. Werksttech. 50 (2019) 432–441.

DOI: 10.1002/mawe.201800090

Google Scholar

[3] V. Momeni, M.H. Alaei, Optimization of Injection Parameters in Metal Injection Molding of 4605 Low Alloy Steel, Modares Mech. Eng. 19 (2019) 1199–1208.

Google Scholar

[4] A.K. Pandey, A.P. Chaudhari, P. Vemula, B. Sunil, K.C. Nayak, P.P. Date, Effect of powder loading and testing condition on the different properties of metal injection molding parts, Mater. Today Proc. (2020).

DOI: 10.1016/j.matpr.2020.03.309

Google Scholar

[5] K. Yu, S. Ye, W. Mo, Y. Lv, H. Jiang, R. Ma, C.T. Kwok, P. Yu, Oxygen content control in metal injection molding of 316L austenitic stainless steel using water atomized powder, J. Manuf. Process. 50 (2020) 498–509.

DOI: 10.1016/j.jmapro.2019.12.038

Google Scholar

[6] Y. Liu, Y. Pan, X. Lu, J. Sun, T. Hui, Y. Yang, A. Yu, X. Qu, J. Zhang, Fabrication of TiAl alloys turbocharger turbine wheel for engines by metal injection molding, Powder Technol. 384 (2021) 132–140.

DOI: 10.1016/j.powtec.2021.01.070

Google Scholar

[7] V. Momeni, A. Askari, M.H. Alaei, A.H. Rahimi, K. Nekouee, H. Zangi, The Effect of Powder Loading and Binder System on the Mechanical, Rheological and Microstructural Properties of 4605 Powder in MIM Process, Trans. Indian Inst. Met. 72 (2019) 1245–1254.

DOI: 10.1007/s12666-019-01615-1

Google Scholar

[8] B. Huang, S. Liang, X. Qu, The rheology of metal injection molding, 137 (2003) 132–137.

Google Scholar

[9] L. Shu-quan, T. Yan, H. Bai-yun, Rheology in metal powder injection molding, 2 (2007) 372–377.

Google Scholar

[10] Y. Li, L. Li, K.A. Khalil, Effect of powder loading on metal injection molding stainless steels, J. Mater. Process. Technol. 183 (2007) 432–439.

DOI: 10.1016/j.jmatprotec.2006.10.039

Google Scholar

[11] M. Ra, F. Ahmad, N. Muhamad, A. Bakar, M.A. Omar, M. Niaz, M. Aslam, Effects of solid loading and cooling rate on the mechanical properties and corrosion behavior of powder injection molded 316 L stainless steel, 289 (2016) 135–142.

DOI: 10.1016/j.powtec.2015.11.063

Google Scholar

[12] V. Momeni, M.H. Alaei, A. Askari, A.H. Rahimi, K. Nekouee, Effect of the Fraction of Steel 4605 Powder in the Load in Injection Molding with the Use of a Polymer-Based Binder, Met. Sci. Heat Treat. 61 (2020) 777–781.

DOI: 10.1007/s11041-020-00499-z

Google Scholar

[13] M.E. Sotomayor, A. Várez, B. Levenfeld, Influence of powder particle size distribution on rheological properties of 316 L powder injection moulding feedstocks, Powder Technol. 200 (2010) 30–36.

DOI: 10.1016/j.powtec.2010.02.003

Google Scholar

[14] M.E. Sotomayor, B. Levenfeld, A. Várez, Powder injection moulding of premixed ferritic and austenitic stainless steel powders, Mater. Sci. Eng. A. 528 (2011) 3480–3488.

DOI: 10.1016/j.msea.2011.01.038

Google Scholar

[15] L. Liu, N.H. Loh, B.Y. Tay, S.B. Tor, Y. Murakoshi, R. Maeda, Mixing and characterisation of 316L stainless steel feedstock for micro powder injection molding, Mater. Charact. 54 (2005) 230–238.

DOI: 10.1016/j.matchar.2004.11.014

Google Scholar

[16] X. Kong, T. Barriere, J.C. Gelin, Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding, J. Mater. Process. Tech. 212 (2012) 2173–2182.

DOI: 10.1016/j.jmatprotec.2012.05.023

Google Scholar

[17] G. Yang, J. Li, W. Song, J. Meng, Mixing behavior and flowing property in micro-powder injection molding of carbonyl steel feedstock, Adv. Mater. Res. 753–755 (2013) 167–170.

DOI: 10.4028/www.scientific.net/amr.753-755.167

Google Scholar

[18] J. FAN, Y. HAN, T. LIU, H. CHENG, Y. GAO, J. TIAN, Influence of surfactant addition on rheological behaviors of injection-molded ultrafine 98W-1Ni-1Fe suspension, Trans. Nonferrous Met. Soc. China. 23 (2013) 1709–1717.

DOI: 10.1016/s1003-6326(13)62652-7

Google Scholar

[19] M.R. Harun, N. Muhamad, A.B. Sulong, N.H. Mohamad Nor, M.H.I. Ibrahim, Rheological Investigation of ZK60 Magnesium Alloy Feedstock for Metal Injection Moulding Using Palm Stearin Based Binder System, in: Front. Manuf. Des. Sci., Trans Tech Publications Ltd, 2011: p.4126–4130.

DOI: 10.4028/www.scientific.net/amm.44-47.4126

Google Scholar

[20] N.H.M. Nor, N. Muhamad, M.H.I. Ibrahim, M. Ruzi, K.R. Jamaludin, OPTIMIZATION OF INJECTION MOLDING PARAMETER OF Ti-6Al-4V POWDER MIX WITH PALM STEARIN AND POLYETHYLENE FOR THE HIGHEST GREEN STRENGTH BY USING TAGUCHI METHOD, Int. J. Mech. Mater. Eng. 6 (2011) 126–132.

DOI: 10.1063/1.3552528

Google Scholar

[21] S. Amin, N. Muhamad, K. Jamaludin, A. Fayyaz, H. Yunn, Characterization of the Feedstock Properties of Metal Injection-molded WC-Co with Palm Stearin Binder System, Sains Malaysiana. 43 (2014) 123–128.

Google Scholar

[22] R. Sauti, N. Wahab, M.A. Omar, I.N. Ahmad, Effects of Binders System on Sintered Properties of Metal Injection Molding Parts of M2 High Speed Steel, in: Adv. Mater. Nanotechnol. III, Trans Tech Publications, 2014: p.201–204.

DOI: 10.4028/www.scientific.net/amr.1024.201

Google Scholar

[23] R. Ibrahim, M. Azmirruddin, M. Jabir, N. binti Johari, M. Muhamad, A.R.A. Talib, Injection Molding of Inconel718 Parts for Aerospace Application Using Novel Binder System Based On Palm Oil Derivatives, World Acad. Sci. Eng. Technol. Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng. 6 (2012) 2112–2116.

DOI: 10.4028/www.scientific.net/ast.76.247

Google Scholar

[24] mohd afian Omar, I. Subuki, N. Abdullah, M. Ismail, The Influence Of Palm Stearin Content On The Rheological Behaviour Of 316L Stainless Steel Mim Compact, J. Sci. Technol. 2 (2011).

Google Scholar

[25] N. Nor, N. Muhamad, K. Jamaludin, S. Ahmad, Characterisation of Titanium Alloy Feedstock for Metal Injection Moulding Using Palm Stearin Binder System, Adv. Mater. Res. 264–265 (2011).

DOI: 10.4028/www.scientific.net/amr.264-265.586

Google Scholar

[26] N.H.M. Nor, N. Muhamad, A.K.A.M. Ihsan, K.R. Jamaludin, Sintering Parameter Optimization of Ti-6Al-4V Metal Injection Molding for Highest Strength Using Palm Stearin Binder, Procedia Eng. 68 (2013) 359–364.

DOI: 10.1016/j.proeng.2013.12.192

Google Scholar

[27] T. Osada, K. Nishiyabu, S. Matsuzaki, S. Tanaka, H. Miura, Effects of Metal Powder Characteristics on the Compactibility and Sinterability in Micro Metal Injection Molding Process, Trans. Japan Soc. Mech. Eng. Ser. A. 72 (2006) 148–153.

DOI: 10.1299/kikaia.72.148

Google Scholar

[28] A.J. Coleman, K. Murray, M. Kearns, T.A. Tingskog, Effect of Particle Size Distribution on Processing and Properties of Metal Injection Moulded 4140 and 4340, in: Adv. Powder Metall. Part. Mater., Metal Powder Industries Federation, (2011).

Google Scholar

[29] M.A. Ben Trad, V. Demers, L. Dufresne, Effect of Powder Shape and Size on Rheological, Thermal, and Segregation Properties of Low-Pressure Powder Injection Molding Feedstocks, J. Mater. Eng. Perform. 28 (2019) 5551–5562.

DOI: 10.1007/s11665-019-04276-9

Google Scholar

[30] V. Momeni, H. Zangi, M. hossein Alaei, Effect of thermal debinding and sintering parameters on the mechanical properties of 4605 MIM compact using the RSM, Adv. Mater. Process. Technol. 0 (2021) 1–16.

DOI: 10.1080/2374068x.2021.1945807

Google Scholar

[31] Y. min LI, X. quan LIU, F. hua LUO, J. ling YUE, Effects of surfactant on properties of MIM feedstock, Trans. Nonferrous Met. Soc. China (English Ed. 17 (2007) 1–8.

DOI: 10.1016/s1003-6326(07)60039-9

Google Scholar

[32] T.G. Kang, S. Ahn, S.H. Chung, S.T. Chung, Y.S. Kwon, S.J. Park, R.M. German, Handbook of Metal Injection Molding, (2012).

DOI: 10.1016/b978-0-08-102152-1.00013-1

Google Scholar

[33] J. Fan, Y. Han, T. Liu, H. Cheng, Y. Gao, J. Tian, Influence of surfactant addition on rheological behaviors of injection-molded ultrafine 98W−1Ni−1Fe suspension, Trans. Nonferrous Met. Soc. China. 23 (2013) 1709–1717.

DOI: 10.1016/s1003-6326(13)62652-7

Google Scholar

[34] L. Liu, N.H. Loh, B.Y. Tay, S.B. Tor, Y. Murakoshi, R. Maeda, Mixing and characterisation of 316L stainless steel feedstock for micro powder injection molding, Mater. Charact. 54 (2005) 230–238.

DOI: 10.1016/j.matchar.2004.11.014

Google Scholar

[35] N. V Pogodina, C. Cerclé, L. Avérous, R. Thomann, M. Bouquey, R. Muller, Processing and characterization of biodegradable polymer nanocomposites : detection of dispersion state, in: Annu. Eur. Rheol. Conf., 2008: p.543–553.

DOI: 10.1007/s00397-007-0243-2

Google Scholar

[36] J. Hidalgo, A. Jiménez-Morales, J.M. Torralba, Torque rheology of zircon feedstocks for powder injection moulding, J. Eur. Ceram. Soc. 32 (2012) 4063–4072.

DOI: 10.1016/j.jeurceramsoc.2012.06.023

Google Scholar

[37] S. Supriadi, B. Suharno, R. Hidayatullah, G. Maulana, E.R. Baek, Thermal Debinding Process of SS 17-4 PH in Metal Injection Molding Process with Variation of Heating Rates, Temperatures, and Holding Times, in: Mater. Manuf. Technol. VIII, Trans Tech Publications Ltd, 2017: p.238–244.

DOI: 10.4028/www.scientific.net/ssp.266.238

Google Scholar

[38] A.M. Amin, M.H.I. Ibrahim, R. Asmawi, N. Mustaffa, M.Y. Hashim, Thermal Debinding and Sintering of water atomised {SS}316L Metal Injection Moulding Process, 226 (2017) 12155.

DOI: 10.1088/1757-899x/226/1/012155

Google Scholar

[39] G. Matula, B. Tomiczek, M. Król, A. Szatkowska, M.E. Sotomayor, Application of thermal analysis in the selection of polymer components used as a binder for metal injection moulding of Co--Cr--Mo alloy powder, J. Therm. Anal. Calorim. 134 (2018) 391–399.

DOI: 10.1007/s10973-018-7543-x

Google Scholar

[40] D. Lin, D. Sanetrnik, H. Cho, S.T. Chung, Y.S. Kwon, K.H. Kate, B. Hausnerova, S. V. Atre, S.J. Park, Rheological and thermal debinding properties of blended elemental Ti-6Al-4V powder injection molding feedstock, Powder Technol. 311 (2017) 357–363.

DOI: 10.1016/j.powtec.2016.12.071

Google Scholar

[41] T. Siva Prasad, C. Yuvaraj, K.P. Rao, Analysis and Optimization of Metal Injection Molding Feedstock SS 316L for Rheological Properties, J. Inst. Eng. Ser. D. 99 (2018) 177–184.

DOI: 10.1007/s40033-018-0166-3

Google Scholar

[42] A. Askari, V. Momeni, Rheological investigation and injection optimization of Fe–2Ni–2Cu feedstock for metal injection molding process, Mater. Chem. Phys. 271 (2021) 124926.

DOI: 10.1016/j.matchemphys.2021.124926

Google Scholar

[43] B. Huang, S. Liang, X. Qu, The rheology of metal injection molding, J. Mater. Process. Technol. 137 (2003) 132–137.

Google Scholar

[44] V. Momeni, H. Zangi, M.H. Allaei, Effect of polypropylene as the backbone of MIM feedstock on the micro-structural phase constituents, mechanical and rheological properties of 4605 low alloy steel compacts, Powder Metall. 63 (2020) 27–34.

DOI: 10.1080/00325899.2019.1701812

Google Scholar

[45] V. Momeni, A. Askari, M.H. Allaei, H. Zangi, Investigating the Effect of Stearic Acid on the Mechanical, Rheological, and Microstructural Properties of AISI 4605 Feedstock for Metal Injection Molding Process, Trans. Indian Inst. Met. (2021).

DOI: 10.1007/s12666-021-02282-x

Google Scholar