[1]
A.A. Salem, R. Abd-Rahman, R. Wan, S.A. Al-Gailani, U.U. Sheikh, Pollution Flashover Under Different Contamination Profiles on High Voltage Insulator: Numerical and Experiment Investigation, IEEE Access. PP (99) (2021) 1-1.
DOI: 10.1109/access.2021.3063201
Google Scholar
[2]
M. Jiang, J. Guo, Y. Jiang, L. Li, M. Lu, Dust contamination on surface of transmission line insulators in air-polluted regions in China: statistical characteristics, adhesion mechanism, and environmental impact factors, Environmental Science and Pollution Research. 27(19) (2020) 23643-23654.
DOI: 10.1007/s11356-020-08692-6
Google Scholar
[3]
L.I. Zhen-Yu, X.D. Liang, B. Wang, Y.X. Zhou, Natural Pollution Deposit Test of Polymeric Insulators Operated under DC Voltage, Power System Technology. 14(2007):10-14.
Google Scholar
[4]
F. Lin, S.H. Li, Y. Li, H.J. Li, D.B. Zhu, Super-hydrophobic Surfaces: From Natural to Artificial, Advanced Materials. 14(24) (2010) 1857-1860.
DOI: 10.1002/adma.200290020
Google Scholar
[5]
M. Yu, S. Chen, B. Zhang, D. Qiu, S. Cui, Why a lotus-like superhydrophobic surface is self-cleaning? An explanation from surface force measurements and analysis, Langmuir the Acs Journal of Surfaces & Colloids. 30(45) (2014) 13615-21.
DOI: 10.1021/la5041272
Google Scholar
[6]
H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Super-Amphiphobic, Aligned Carbon Nanotube Films, Angewandte Chemie International Edition. 40(9) (2001) 1743-1746.
DOI: 10.1002/1521-3773(20010504)40:9<1743::aid-anie17430>3.0.co;2-#
Google Scholar
[7]
N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, E.N. Wang, Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces, Nano Letters. 13(1) (2013) 179-187.
DOI: 10.1021/nl303835d
Google Scholar
[8]
K.M. Wisdom, J.A. Watson, X. Qu, F. Liu, C.H. Chen, Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate, Proceedings of the National Academy of Sciences. 110(20) (2013).
DOI: 10.1073/pnas.1210770110
Google Scholar
[9]
S.-W. Wang, L. Peng, J.-W. Chen, L. Li, A comparative study of the self-propelled jumping capabilities of coalesced droplets on RTV surfaces and superhydrophobic surfaces, Chinese Physics B. 30(4) (2021) 046501.
DOI: 10.1088/1674-1056/abeedb
Google Scholar
[10]
L. Jian, X. Wang, Z. Huang, X. Zhao, F. Wang, Research of Preparation, Anti-icing and Anti-pollution of Super Hydrophobic Insulation Coatings, Transactions of China Electrotechnical Society 32.16(2017):61-75.
Google Scholar
[11]
Y. Li, X. Wan, X. Liu, J. Nan, Y. Li, Contamination Characteristics of Superhydrophobic Coated Insulators in Natural Environment and Artificial Simulation, 2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO). 2021, pp.1-6.
DOI: 10.1109/aeero52475.2021.9708133
Google Scholar
[12]
Y. Liu, Y. Guo, B. Wang, X. Zhang, G. Huang, G. Zhang, Y. Liu, Q. Deng, G. Wu, Pollution morphology characteristics on a superhydrophobic surface and its pollution flashover voltage in DC electric field, High Voltage. 7(3) (2022) 564-574.
DOI: 10.1049/hve2.12165
Google Scholar
[13]
J. Li, Y. Wei, Z. Huang, F. Wang, X. Yan, Z. Wu, Electrohydrodynamic behavior of water droplets on a horizontal super hydrophobic surface and its self-cleaning application, Applied Surface Science. 403 (2017) 133-140.
DOI: 10.1016/j.apsusc.2017.01.141
Google Scholar
[14]
S. Wang, Q. Zou, X. Zhao, J. Chen, L. Li, J. Chen, Y. Xie, K. Yang, Predicting the DC pollution flashover voltage on the insulation surfaces with superhydrophobicity, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 646 (2022) 128987.
DOI: 10.1016/j.colsurfa.2022.128987
Google Scholar
[15]
Arshad, G. Momen, M. Farzaneh, A. Nekahi, Properties and applications of superhydrophobic coatings in high voltage outdoor insulation: A review, IEEE Transactions on Dielectrics and Electrical Insulation. 24(6) (2017) 3630-3646.
DOI: 10.1109/tdei.2017.006725
Google Scholar
[16]
H.Y. Erbil, Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives, Langmuir. 36(10) (2020) 2493-2509.
DOI: 10.1021/acs.langmuir.9b03908
Google Scholar
[17]
K.K. Varanasi, T. Deng, J.D. Smith, M. Hsu, N. Bhate, Frost formation and ice adhesion on superhydrophobic surfaces, Applied Physics Letters. 97(23) (2010) 234102.
DOI: 10.1063/1.3524513
Google Scholar
[18]
J. Zimmermann, F.A. Reifler, U. Schrade, G.R.J. Artus, S. Seeger, Long term environmental durability of a superhydrophobic silicone nanofilament coating, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 302(1) (2007) 234-240.
DOI: 10.1016/j.colsurfa.2007.02.033
Google Scholar
[19]
C. Hu, W. Chen, T. Li, Y. Ding, H. Yang, S. Zhao, E.A. Tsiwah, X. Zhao, Y. Xie, Constructing non-fluorinated porous superhydrophobic SiO2-based films with robust mechanical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 551 (2018) 65-73.
DOI: 10.1016/j.colsurfa.2018.04.059
Google Scholar
[20]
X. Liang, C. Wu, Y. Cai, S. Xu, Y. Liu, J. Wang, Impact of surface discharge on pollution layer of silicone rubber insulator, 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). (2015) 472-475.
DOI: 10.1109/icpadm.2015.7295311
Google Scholar
[21]
H. Dai, H. Mei, L. Wang, C. Zhao, Z. Jia, Description Method Ⅱ for Unobvious Hydrophobic State of Composite Insulators——Uncertainty of Hydrophobic Degree by Spray Grading Method, Transactions of China Electrotechnical Society. 30(03) (2015) 240-249.
Google Scholar
[22]
S. Ren, J. Chen, M. Jiang, S. Wang, Z. Wan, Y. Xie, L. Li, The effect of drop volume on the apparent contact angle of hierarchical structured superhydrophobic surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 611 (2021) 125849.
DOI: 10.1016/j.colsurfa.2020.125849
Google Scholar
[23]
A. García, J.E. Miraglia, Total electron yields and stopping power of protons colliding with NaCl-type insulator surfaces II, Physical Review A. 75(4) (2009) 810-814.
DOI: 10.1103/physreva.75.042904
Google Scholar
[24]
A.F.M. Leenaars, A New Approach to the Removal of Sub-Micron Particles from Solid (Silicon) Substrates, in: K.L. Mittal (Ed.), Particles on Surfaces 1: Detection, Adhesion, and Removal, Springer US, Boston, MA. (1988) 361-372.
DOI: 10.1007/978-1-4615-9531-1_28
Google Scholar
[25]
Barthel, Adhesive elastic contacts: JKR and more, Journal of Physics D Applied Physics. 41(16) (2008) 163001.
DOI: 10.1088/0022-3727/41/16/163001
Google Scholar
[26]
D.S. Grierson, E.E. Flater, R.W. Carpick, Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy, Journal of Adhesion Science & Technology. 19(3-5) (2005) 291-311.
DOI: 10.1163/1568561054352685
Google Scholar
[27]
S. Ren, S. Wang, Z. Dong, J. Chen, L. Li, Dynamic behaviors and self-cleaning property of droplet on superhydrophobic coating in uniform DC electric field, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 626 (2021) 127056.
DOI: 10.1016/j.colsurfa.2021.127056
Google Scholar