[1]
P. Fallböhmer, Advanced Cutting Tools for the Finishing of Dies and Molds, VDI-Verlag GmbH, ISBN 3-18-349802-2, Düsseldorf, (1998).
Google Scholar
[2]
R.A. Mesquita, C.A. Barbosa, Development of improved machinability steel and precipitation hardening steels for plastic moulds. Tecnol. Metal. Mater., São Paulo, Brazil, (2005), vol. 1, N. 4 , pp.11-15.
Google Scholar
[3]
Information on http://www.plastico.com.br/revista/pm374/ tecnologicas4.html.
Google Scholar
[4]
F.T. Gerson, Fresh approaches to mould steel selection. Technical Series n.10.062, Nickel Development Institute - NiDI, Canada, (1991), pp.1-5.
Google Scholar
[5]
A.M. Zanatta, J.O. Gomes, J.D. Bressan, C.A. Barbosa, Influence of hard and soft inclusions on the machinability and polishability of VP100 mold steel. Advanced Materials Research, (2011), vol. 223 pp.464-472.
DOI: 10.4028/www.scientific.net/amr.223.464
Google Scholar
[6]
E. Brinksmeier, O. Riemer, A. Gessenharter, Finishing of structured surfaces by abrasive polishing. Precision Engineering, (2006) 30: 325–336.
DOI: 10.1016/j.precisioneng.2005.11.012
Google Scholar
[7]
P. Fallbohmer, T. Altan, H.-K. Tonshoff, T. Nakagawa, Survey of the die and mold manufacturing industry: Practices in Germany, Japan, and the United States. J. Mater. Process. Technol., (1996) 59: 158-168.
DOI: 10.1016/0924-0136(96)02297-2
Google Scholar
[8]
Z. Hao, Z. Zhenyu, Z. Houming, L. Kai, J. Jingcheng, Effect of scanning interval on polishing effect of S136D die steel. Materials Science Forum, (2021), vol. 1020, pp.55-59.
DOI: 10.4028/www.scientific.net/msf.1020.55
Google Scholar
[9]
T. Deng, J. Li, Z. Zheng, Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation. Int. J. Mach. Tool & Manuf., (2020), vol. 148, 103472.
DOI: 10.1016/j.ijmachtools.2019.103472
Google Scholar
[10]
H. Xie, Y. Zou, Study on the magnetic abrasive finishing process using an alternating magnetic field – discussion on the application of full-wave rectifier current. Materials Science Forum, (2021), vol. 1018, pp.117-122.
DOI: 10.4028/www.scientific.net/msf.1018.117
Google Scholar
[11]
P. Mishra, S. Sood, M. Pandit, P. Khanna, Additive manufacturing: post processing methods and challenges. Advanced Eng. Forum, (2021), vol. 39, pp.21-42.
DOI: 10.4028/www.scientific.net/aef.39.21
Google Scholar
[12]
Y. Li, Y. Wu, L. Zhou, H. Guo, J. Cao, M. Fujimoto, M. Kemmochi, Investigation into chemo- mechanical fixed abrasive polishing of fused silica with the assistance of ultrasonic vibration. Key Eng. Mater., (2012), vols. 523-524, pp.155-160.
DOI: 10.4028/www.scientific.net/kem.523-524.155
Google Scholar
[13]
R.I. Trezona, D.N. Allsopp, I.M. Hutchings, Transition between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test. Wear, (1999), 225–229: 205–14.
DOI: 10.1016/s0043-1648(98)00358-5
Google Scholar
[14]
J.D. Bressan, J.A. Williams, Mathematical slip-line field solutions for ploughing a hard particle over a softer material. Wear, (2009) 267: 1865–1872.
DOI: 10.1016/j.wear.2009.03.008
Google Scholar
[15]
S . Awad, Ultrasonic cavitations and precision cleaning. Precision Cleaning magazine, November, 1996. https://crest-ultrasonics.com/wp-content/uploads/2021/03/lit-ultrasonic-cavitations.pdf.
Google Scholar
[16]
M. Kadivar, B. Azarhoushang, Kinematics and material removal mechanisms of loose abrasive machining. In: Tribology and Fundamentals of abrasive machining processes, Third edition, Editors B. Azarhoushang et al., Elsevier/William Adrew, (2022), pp.507-536.
DOI: 10.1016/b978-0-12-823777-9.00007-0
Google Scholar
[17]
J. Ge, C. Li, Z. Gao, Y. Ren, X. Xu, C. Li, Y. Xie, Softness abrasive flow polishing method using constrained boundary vibration. Powder Technol., (2021), 382: 173-187.
DOI: 10.1016/j.powtec.2020.12.065
Google Scholar
[18]
J. Zhao, J. Huang, R. Wang, H.-R. Peng, W. Hang, S. Ji, Investigation of the optimal parameters for the surface finish of K9 optical glass using a soft abrasive rotary flow polishing process. J. Manufacturing Processes, (2020), 49: 26-34.
DOI: 10.1016/j.jmapro.2019.11.011
Google Scholar
[19]
S. Ji, H. Cao, J. Zhao, Y. Pan, E. Jiang, Soft abrasive flow polishing based on the cavitation effect. The International Journal of Advanced Manufacturing Technology (2019) 101:1865-1878 https://doi.org/10.1007/s00170-018-2983-9.
DOI: 10.1007/s00170-018-2983-9
Google Scholar
[20]
F.W. Preston, The theory and design of plate glass polishing machines. J. Soc. Glass Technol. (1927), 11: 214–56.
Google Scholar
[21]
P.H. Loc, Application of Taguchi method to investigation of optimal abrasive jet polishing parameters. J. Science and Technol., (2019), vol. 17, N. 6, pp.1-5.
Google Scholar
[22]
A.M. Zanatta, J.D. Bressan, J.O. Gomes, F.D. Origo, A.J. Damião, Surface finish assesment of polishing process of tool steels by abrasion, using diamond and alumina particles. Advanced Materials Research, (2013), vol. 716, pp.423-429.
DOI: 10.4028/www.scientific.net/amr.716.423
Google Scholar
[23]
S. Zahoor, W. Abdul-Kader, A. Hussain, A. Ahmad, EDM die sinking of tool steel: performance evaluation of electrode materials for surface roughness and dimensional accuracy. Proceed. 5th NA International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, (2020), pp.1079-1086.
Google Scholar
[24]
D.C. Montgomery, Design and Analysis of Experiments, 10th Edition, John Wiley & Sons, (2019).
Google Scholar