Analysis of Inclined Crack in Aluminium Alloy Plate Subjected to Three-Point Bending Load Repaired with Carbon Fiber Reinforced Polymer

Article Preview

Abstract:

If the attention is not paid to the crack in a structure, then it could suddenly propagate at a rapid rate and rip apart the structures. A small crack needs urgent attention and repair since replacing the parts with a small crack is not economically feasible at all the time. Repairs were used to be carried out through rivets, welding and nut-bolts, but recently composite materials are showing promising results in this field. Since composite material are anisotropic in nature their application needs careful study about the loading pattern on the repaired structure. In this study, Carbon Fiber Reinforced Polymer (CFRP) was used as a composite material to repair Aluminium alloy specimens. These specimen were subjected to a three-point bending load to investigate the effectiveness of CFRP. By using innovative ply drop technique and design of experiment a configuration was selected to sustain three-point bending load. To suppress the CFRP’s peeling off tendency, attention was given to the interfacial shear stress rather than to the fracture toughness parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-81

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Nebe, T. Schmack, T. Schaefer, and F. Walther, "Experimental and numerical investigation on the impact response of CFRP under 3-point-bending," Compos. Part C Open Access, vol. 4, no. August 2020, p.100079, 2021.

DOI: 10.1016/j.jcomc.2020.100079

Google Scholar

[2] M. Bastiurea, M. S. Rodeanu, D. Dima, M. Murarescu, and G. Andrei, "Evaluation of mechanical properties of polyester composite with graphene and graphite through three-point bending test," Appl. Mech. Mater., vol. 659, p.22–27, 2014.

DOI: 10.4028/www.scientific.net/AMM.659.22

Google Scholar

[3] J. Zhang, X. Hu, W. Hong, B. Zhang, and C. Zhang, "Experimental Study on Bending Performance of Composite Sandwich Panel with New Mixed Core," MATEC Web Conf., vol. 275, no. 201 9, p.02018, 2019.

DOI: 10.1051/matecconf/201927502018

Google Scholar

[4] A. Azzam and W. Li, "An experimental investigation on the three-point bending behavior of composite laminate," IOP Conf. Ser. Mater. Sci. Eng., vol. 62, no. 1, 2014.

DOI: 10.1088/1757-899X/62/1/012016

Google Scholar

[5] F. Mohamad, H. Hossein, P. Farzad, and A. Mehdi, "Composite materials damage characterization under quasi-static 3-point bending test using Fuzzy C-Means clustering," Appl. Mech. Mater., vol. 110–116, p.1221–1228, 2012.

DOI: 10.4028/www.scientific.net/AMM.110-116.1221

Google Scholar

[6] B. Yao, Z. Zhou, L. Duan, and Z. Chen, "Characterization of three-point bending properties of metal-resin interpenetrating phase composites," RSC Adv., vol. 8, no. 29, p.16171–16177, 2018.

DOI: 10.1039/c8ra01953c

Google Scholar

[7] L. Czechowski, J. Jankowski, and M. Kotełko, "Experimental and numerical three-point bending test for sandwich beams," J. KONES, vol. 24, no. 3, p.53–62, 2017.

Google Scholar

[8] O. V. Bashkov, A. A. Bryansky, I. V. Belova, and D. B. Solovev, "Investigation of the Stages of Damage Accumulation in Polymer Composite Materials," Mater. Sci. Forum, vol. 945, p.515–521, 2019.

DOI: 10.4028/WWW.SCIENTIFIC.NET/MSF.945.515

Google Scholar

[9] E. Hara, T. Yokozeki, Y. Iwahori, H. Hatta, and T. Ishikawa, "Out-of-plane tensile modulus of UD-CFRP laminate by 3-point bending test," ICCM Int. Conf. Compos. Mater., vol. 2013-July, no. 3, p.8293–8300, 2013.

DOI: 10.6089/jscm.39.184

Google Scholar

[10] D. Miura, Y. Ishida, T. Miyasaka, A. Shinya, and H. Aoki, "Reliability of Different Bending Test Methods for Dental Press Ceramics," Materials (Basel)., vol. 13, no. 22, p.1–10, Nov. 2020.

DOI: 10.3390/MA13225162

Google Scholar

[11] B. Bachir Bouiadjra, F. Benyahia, A. Albedah, B. A. Bachir Bouiadjra, and S. M. A. Khan, "Comparison between composite and metallic patches for repairing aircraft structures of aluminum alloy 7075 T6," Int. J. Fatigue, vol. 80, p.128–135, 2015.

DOI: 10.1016/j.ijfatigue.2015.05.018

Google Scholar

[12] J. P. Nunes, A. S. Pouzada, and C. A. Bernardo, "Erratum: The use of a three-point support flexural text to predict the stiffness of anisotropic composit plares in bending (Polymer Testing PII: S014294180100040X)," Polym. Test., vol. 21, no. 7, p.853, 2002.

DOI: 10.1016/S0142-9418(02)00040-5

Google Scholar

[13] O. E. Babatunde, J. M. Yatim, Y. Ishak, R. Masoud, and R. Meisam, "Jurnal Teknologi P RODUCTION : A R EVIEW," vol. 12, p.23–30, 2015.

DOI: 10.11113/jt.v77.6304

Google Scholar

[14] W. N. Abd Rashid et al., "Design of non destructive testing on composite material using parallel plate electrical capacitance tomography: A conceptual framework," J. Teknol., vol. 79, no. 5–2, p.71–76, 2017.

DOI: 10.11113/jt.v79.11286

Google Scholar

[15] R. T. Tenchev and B. G. Falzon, "An Experimental and Numerical Study of the Static and Fatigue Performance of a Composite Adhesive Repair," Key Eng. Mater., vol. 383, p.25–34, 2008.

DOI: 10.4028/WWW.SCIENTIFIC.NET/KEM.383.25

Google Scholar

[16] N. Sapiai, A. Jumahat, and J. Mahmud, "Jurnal Teknologi F LEXURAL A ND T ENSILE P ROPERTIES O F K ENAF / G LASS F IBRES H YBRID C OMPOSITES," vol. 3, p.115–120, 2015.

Google Scholar

[17] S. I. Koryagin, N. L. Velikanov, and O. V. Sharkov, "Experimental Research of Crack Resistance of Composite Materials," Key Eng. Mater., vol. 736, p.8–11, 2017.

DOI: 10.4028/WWW.SCIENTIFIC.NET/KEM.736.8

Google Scholar

[18] S. Kling and T. Czigány, "Analysis of Applicability of the Hollow Carbon Fibres for Self-Repairing Composites," Mater. Sci. Forum, vol. 729, p.246–251, 2013.

DOI: 10.4028/WWW.SCIENTIFIC.NET/MSF.729.246

Google Scholar

[19] S. Anandan, G. Dhaliwal, S. Ganguly, and K. Chandrashekhara, "Investigation of sandwich composite failure under three-point bending: Simulation and experimental validation," J. Sandw. Struct. Mater., vol. 22, no. 6, p.1838–1858, 2020.

DOI: 10.1177/1099636218791162

Google Scholar

[20] S. Tamboli, A. Pandey, A. Bongale, and S. Kumar, "Performance evaluation of cracked aluminum alloy repaired with carbon fiber reinforced polymer for aerospace application," Mater. Res. Express, vol. 6, no. 11, 2019.

DOI: 10.1088/2053-1591/ab493c

Google Scholar

[21] S. Tamboli, A. Pandey, and M. V. Patil, "Investigation and optimisation of cracked aluminium alloy plate restored for fatigue loading application," Int. J. Comput. Aided Eng. Technol., vol. 16, no. 2, p.153–169, 2022.

DOI: 10.1504/IJCAET.2022.120832

Google Scholar

[22] I. A. Alnaser, Y. Alsaadi, and M. W. Keller, "Comparison of the crack-growth rates for full-encirclement and patch composite repairs," Compos. Struct., vol. 227, p.111257, Nov. 2019.

DOI: 10.1016/J.COMPSTRUCT.2019.111257

Google Scholar

[23] V. E. Wildemann, E. V. Spaskova, and A. I. Shilova, "Research of the Damage and Failure Processes of Composite Materials Based on Acoustic Emission Monitoring and Method of Digital Image Correlation," Solid State Phenom., vol. 243, p.163–170, 2016.

DOI: 10.4028/WWW.SCIENTIFIC.NET/SSP.243.163

Google Scholar

[24] S. M. A. Khan Mohammed, R. Mhamdia, A. Albedah, B. A. Bachir Bouiadjra, B. B. Bouiadjra, and F. Benyahia, "Fatigue crack growth in aluminum panels repaired with different shapes of single-sided composite patches," Int. J. Adhes. Adhes., vol. 105, p.102781, Mar. 2021.

DOI: 10.1016/J.IJADHADH.2020.102781

Google Scholar

[25] Y. Ji, B. Yuan, X. Hu, H. Jiang, and Y. Qiao, "Repairing sharp delamination cracks in CFRP through capillary action of acetone-diluted resin solution," Compos. Sci. Technol., vol. 219, p.109249, Mar. 2022.

DOI: 10.1016/J.COMPSCITECH.2021.109249

Google Scholar

[26] H. Zarrinzadeh, M. Z. Kabir, and A. Deylami, "Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading," Thin-Walled Struct., vol. 112, p.140–148, Mar. 2017.

DOI: 10.1016/j.tws.2016.12.023

Google Scholar

[27] G. Vukelic and G. Vizentin, "Composite wrap repair of a failed pressure vessel — Experimental and numerical analysis," Thin-Walled Struct., vol. 169, p.108488, Dec. 2021.

DOI: 10.1016/J.TWS.2021.108488

Google Scholar

[28] I. Garkina, A. Danilov, and V. Selyaev, "Principles of Optimal Control in the Synthesis of Composite Materials," Key Eng. Mater., vol. 723, p.32–36, 2017.

DOI: 10.4028/WWW.SCIENTIFIC.NET/KEM.723.32

Google Scholar

[29] M. Malekan and C. A. Cimini, "Finite element analysis of a repaired thin-walled aluminum tube containing a longitudinal crack with composite patches under internal dynamic loading," Compos. Struct., vol. 184, p.980–1004, Jan. 2018.

DOI: 10.1016/J.COMPSTRUCT.2017.10.079

Google Scholar

[30] Q. Fu et al., "Seawater resistance mechanism of reinforcing bar–concrete composite structures restored by repair material incorporating multiple admixtures in a simulated marine splash zone," Ocean Eng., vol. 253, p.111316, Jun. 2022.

DOI: 10.1016/J.OCEANENG.2022.111316

Google Scholar

[31] C. R. Fisher et al., "Repairing large cracks and reversing fatigue damage in structural metals," Appl. Mater. Today, vol. 13, p.64–68, Dec. 2018.

DOI: 10.1016/J.APMT.2018.07.003

Google Scholar

[32] A. A. Abd-Elhady, H. E. D. M. Sallam, I. M. Alarifi, R. A. Malik, and T. M. A. A. EL-Bagory, "Investigation of fatigue crack propagation in steel pipeline repaired by glass fiber reinforced polymer," Compos. Struct., vol. 242, p.112189, Jun. 2020, doi: 10.1016/J.COMPSTRUCT. 2020.112189.

DOI: 10.1016/j.compstruct.2020.112189

Google Scholar

[33] S. Ahmed, E. T. Thostenson, T. Schumacher, S. M. Doshi, and J. R. McConnell, "Integration of carbon nanotube sensing skins and carbon fiber composites for monitoring and structural repair of fatigue cracked metal structures," Compos. Struct., vol. 203, p.182–192, Nov. 2018.

DOI: 10.1016/J.COMPSTRUCT.2018.07.005

Google Scholar

[34] S. Abbasi, R. B. Ladani, C. H. Wang, and A. P. Mouritz, "Improving the delamination fatigue resistance of composites by 3D woven metal and composite Z-filaments," Compos. Part A Appl. Sci. Manuf., vol. 147, p.106440, Aug. 2021.

DOI: 10.1016/J.COMPOSITESA.2021.106440

Google Scholar

[35] D. Quan, S. Flynn, M. Artuso, N. Murphy, C. Rouge, and A. Ivanković, "Interlaminar fracture toughness of CFRPs interleaved with stainless steel fibres," Compos. Struct., vol. 210, p.49–56, Feb. 2019.

DOI: 10.1016/J.COMPSTRUCT.2018.11.016

Google Scholar

[36] L. Zouambi, M. Khodja, W. Oudad, H. Fekirini, H. Moller, and B. Bachir Bouiadjra, "J-integral evaluation of repaired cracks in AA7075-T6 structures subjected to uniaxial tensile stresses," Polym. Test., vol. 77, p.105874, Aug. 2019.

DOI: 10.1016/J.POLYMERTESTING.2019.04.021

Google Scholar

[37] A. Albedah, S. M. A. Khan Mohammed, B. B. Bouiadjra, B. A. B. Bouiadjra, and F. Benyahia, "Effect of the patch length on the effectiveness of one-sided bonded composite repair for aluminum panels," Int. J. Adhes. Adhes., vol. 81, p.83–89, Mar. 2018.

DOI: 10.1016/J.IJADHADH.2017.11.012

Google Scholar

[38] P. Kumari, A. Alam, Saahil, and J. Wang, "Estimation of low velocity impact on the scarf repair GFRP composite: Experimental method," Mater. Today Proc., vol. 43, p.731–739, Jan. 2021.

DOI: 10.1016/J.MATPR.2020.12.853

Google Scholar

[39] S. Kim, J. Ha, S. Yoon, and M. Kim, "A study on mechanical properties after bonded repair of sandwich composite materials," https://doi.org/10.1142/S0217984920400333, vol. 34, no. 7–9, Mar. 2020.

DOI: 10.1142/S0217984920400333

Google Scholar

[40] I. Ivañez, S. K. Garcia-Castillo, S. Sanchez-Saez, and E. Barbero, "Experimental study of the impact behavior of repaired thin laminates with double composite patch," https://doi.org/10.1080/15376494.2018.1524952, vol. 27, no. 19, p.1701–1708, Oct. 2018.

DOI: 10.1080/15376494.2018.1524952

Google Scholar

[41] P. Kumar, Elements of Fracture Mechanics. New Delhi: Mc-Graww Hill education(India) Private Limited, 2013.

Google Scholar

[42] Q. Q. Yu, T. Chen, X. L. Gu, and X. L. Zhao, "Boundary element analysis of edge cracked steel plates strengthened by CFRP laminates," Thin-Walled Struct., vol. 100, p.147–157, 2016.

DOI: 10.1016/j.tws.2015.12.016

Google Scholar

[43] M. Kim, H. Kim, and W. Lee, "Repair of aircraft structures using composite patches bonded through induction heating," Adv. Compos. Mater., vol. 24, no. 4, p.307–323, 2015.

DOI: 10.1080/09243046.2014.899553

Google Scholar

[44] Y. W. Kwon and B. L. Hall, "Analyses of cracks in thick stiffened plates repaired with single-sided composite patch," Compos. Struct., vol. 119, p.727–737, 2015.

DOI: 10.1016/j.compstruct.2014.09.052

Google Scholar